
FMC TDC 1ns 5 Channel
Documentation

Federico Vaga <federico.vaga@cern.ch>
Adam Wujek <dev_public@wujek.eu>

Jul 12, 2022

TABLE OF CONTENTS

1 Introduction 1
1.1 Repositories and Releases . 1
1.2 Documentation License . 1

2 Hardware Description 3
2.1 Requirements and Supported Platforms . 3
2.2 Mechanical/Environmental . 3
2.3 Timing . 4

3 The Gateware 5
3.1 About Source Code . 5
3.2 Data Format . 6

4 The Software 7
4.1 Driver . 7
4.2 Tools . 16
4.3 The Library . 19
4.4 The Library API . 24

5 The Memory Map 37
5.1 Supported Designs . 37
5.2 TDC memory map . 46

Index 71

i

ii

CHAPTER

ONE

INTRODUCTION

This document describes the gateware developed to support the FmcTDC 1n 5channel (later refered to as fmc-tdc)
mezzanine card on the SPEC and SVEC carrier cards. The gateware is the HDL code used to generate the bitstream
that configures the FPGA on the carrier (sometimes also called firmware). The gateware architecture is described in
detail. The configuration and operation of the fmc-tdc is also explained. The Linux driver and basic tools are explained
as well. On the other hand, this manual is not intended to provide information about the hardware design.

1.1 Repositories and Releases

The FMC TDC 1ns 5 Channels is hosted on the Open HardWare Repository. The main development happens here.
You can clone the GIT project with the following command:

git clone https://ohwr.org/project/fmc-tdc.git

Within the GIT respository, releases are marked with a TAG named using the Semantic Versioning. For example the
latest release is v8.0.0. You can also find older releases with a different versioning mechanism.

For each release we will publish the FPGA bitstream for all supported carrier cards (FPGA Bitstream Page). For the
Linux driver we can’t release the binary because it depends on the Linux version on which it will run. For details
about how to build the Linux driver for your kernel please have a look at Compile And Install section in Driver’s
Documentation.

1.2 Documentation License

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

1

http://www.ohwr.org/projects/spec
http://www.ohwr.org/projects/svec
https://ohwr.org/project/fmc-tdc
https://ohwr.org/
https://semver.org/
https://ohwr.org/project/fmc-tdc/wikis/Releases
http://creativecommons.org/licenses/by-sa/4.0/

FMC TDC 1ns 5 Channel Documentation

2 Chapter 1. Introduction

CHAPTER

TWO

HARDWARE DESCRIPTION

The FmcTdc is an FPGA Mezzanine Card (FMC - VITA 57 standard), containing a 5-channel Time To Digital Converter
(TDC). All channels share same time base, therefore one can relate timestamps of pulses coming to different channels.

2.1 Requirements and Supported Platforms

FmcTdc can work with any VITA 57-compliant FMC carrier, provided that the carrier’s FPGA has enough logic re-
sources. This release of the driver software supports the following carriers:

• SPEC (Simple PCI-Express Carrier),

• SVEC (Simple VME64x Carrier)

In order to operate FmcTdc, the following hardware/software components are required:

• A standard PC with at least one free 4x (or wider) PCI-Express slot and a SPEC PCI-Express FMC carrier
(supplied with an FmcTdc),

• In case of a VME version: any VME64x crate with a controller (tested on a MEN A20 and MEN A25) and a
SVEC VME64x FMC carrier (supplied with one or two FmcTdcs),

• 50-ohm cables with 1-pin LEMO 00 plugs for connecting the I/O signals,

• Any Linux (kernel 3.10+) distribution.

2.2 Mechanical/Environmental

Mechanical and environmental specification:

• Format: FMC (VITA 57),

• Operating temperature range: 0 - 90 degC,

• Carrier connection: 160-pin Low Pin Count FMC connector.

Electrical Inputs/Outputs:

• 5 trigger inputs (LEMO 00),

• 6 LEDs: 5 for indicating input pulse, 1 as an PPS indicator,

• Carrier communication via 160-pin Low Pin Count FMC connector.

Trigger input:

• TTL/LVTTL levels, DC-coupled,

3

FMC TDC 1ns 5 Channel Documentation

• 2 kOhm or 50 Ohm input impedance (software-selectable),

• Power-up input impedance: 2 kOhm,

• Protected against short circuit, overcurrent (> 200 mA) and overvoltage (up to +15 V),

• Maximum input pulse edge rise time: 20 ns.

Power supply:

• Used power supplies: P12V0, P3V3, P3V3 AUX, VADJ (voltage monitor only).

2.3 Timing

Input timing:

• Minimum pulse width: 100 ns. Pulses below 100 ns are rejected. Width checking is done in gateware by
subtracting rising and falling edge timestamps.

• Minimum pulse spacing: 100 ns.

• Only rising edges are time tagged.

Time base:

• On-board oscillator accuracy: +/- 4 ppm (i.e. max. 4 ns error for pulses separated by 1 ms).

• When using White Rabbit as the timing reference: depending on the characteristics of the grandmaster clock and
the carrier used. Usually < 1ns.

Timestamp transfer modes:

• DMA on SPEC-carrier

• FIFO on SVEC-carrier

Performance:

• TDC precision: 700 ps peak-peak (six sigma). Outliers of ±4 ns are observed at the expected frequency of ~ 1
outlier/10M measurements.

• TDC resolution: 81 ps.

• Maximum input pulse rate: Transfer-mode and CPU dependent; some examples:

– DMA-mode on SPEC-carrier, Siemens IPC847E : continuous 200KHz with the minimal processing of
samples

– DMA-mode on SPEC-carrier, Siemens IPC847E : 1 MHz (total from the 5 channels) in burst of 5k samples

– FIFO-mode on SVEC-carrier, VME MENA-25: continuous 80KHz with the minimal processing of samples

4 Chapter 2. Hardware Description

CHAPTER

THREE

THE GATEWARE

3.1 About Source Code

3.1.1 Build from Sources

The fmc-tdc hdl design make use of the hdlmake tool. It automatically fetches the required hdl cores and libraries. It
also generates Makefiles for synthesis/par and simulation.

Here is the procedure to build the FPGA binary image from the hdl source.:

Install ``hdlmake`` (version 3.4).
Get fmc-tdc hdl sources.
git clone https://ohwr.org/project/fmc-tdc.git <src_dir>

Goto the synthesis directory.
cd <src_dir>/hdl/syn/<carrier>/

Fetch the dependencies and generate a synthesis Makefile.
hdlmake

Perform synthesis, place, route and generate FPGA bitstream.
make

3.1.2 Source Code Organisation

hdl/rtl/
TDC specific hdl sources.

hdl/ip_cores/
Location of fetched hdl cores and libraries.

hdl/top/<design>
Top-level hdl module for selected design.

hdl/syn/<design>
Synthesis directory for selected design. This is where the synthesis top manifest, the design constraints and the
ISE project are stored. For each release, the synthesis, place&route and timing reports are also saved here.

hdl/testbench/
Simulation files and testbenches.

5

FMC TDC 1ns 5 Channel Documentation

3.1.3 Dependencies

The fmc-tdc gateware depends on the following hdl cores and libraries: General Cores, DDR3 SP6 core, GN4124 core
(SPEC only), SPEC (SPEC only) VME64x Slave (SVEC only), SVEC (SVEC only), WR Cores.

These dependencies are managed with GIT submodules. Whenever you checkout a different branch remember to update
the submodules as well.:

git submodule sync
git submodule update

3.2 Data Format

The TDC gateware is retrieving timestamps generated by the ACAM chip, it is adapting them to a comprehensive
format and it is then making them available to the PCIe interface in a circular buffer. Each final timestamp is a 128-bit
word with the following structure:

Bits Description
[127:96] Metadata

[127..125]: Input Channel from 0 to 4
[123] : Edge Type, “1” means rising edge, “0” means falling
[122..96] : not used

[95:64] Local UTC time: the resolution is 1 s
[63:32] Coarse time within the current UTC time: the resolution is 8 ns
[31:0] Fine time: the resolution is 81.03 ps

As the structure indicates, each timestamp is referred to a UTC second. The coarse and fine times indicate with 81.03
ps resolution the amount of time passed after the last UTC second.

6 Chapter 3. The Gateware

http://www.ohwr.org/projects/general-cores
http://www.ohwr.org/hdl-core-lib/ddr3-sp6-core
http://www.ohwr.org/hdl-core-lib/gn4124-core
https://ohwr.org/project/spec
http://www.ohwr.org/hdl-core-lib/vme64x-core
https://ohwr.org/project/svec
https://ohwr.org/project/wr-cores

CHAPTER

FOUR

THE SOFTWARE

4.1 Driver

4.1.1 Driver Features

4.1.2 Requirements

The fmc-tdc device driver has been developed and tested on Linux 3.10. Other Linux versions might work as well but
it is not guaranteed.

This driver depends on the zio framework and fmc library; we developed and tested against version zio 1.4 and fmc
1.1.

The FPGA address space must be visible on the host system. This requires a driver for the FPGA carrier that exports
the FPGA address space to the host. As of today we support SPEC and SVEC.

4.1.3 Compile And Install

The compile and install the fmctdc1ns5ch device driver you need first to export the path to its direct dependencies, and
then you execute make. This driver depends on the zio framework and fmc library; on a VME system it depends also
on the VME bridge driver from CERN BE-CEM. Additionally it is assumed that location of wbgen2 is available via
PATH variable.

$ cd /path/to/fmc-tdc/software/kernel
$ export LINUX=/path/to/linux/sources
$ export ZIO=/path/to/zio
$ export FMC=/path/to/fmc-sw
$ export VMEBUS=/path/to/vmebridge
$ make
$ make install

Note: Since version v8.0.0 the fmc-tdc device driver does not depend anymore on fmc-bus subsystem, instead it uses
a new fmc library

The building process generates 3 Linux modules: kernel/fmc-tdc.ko, kernel/fmc-tdc-spec.ko (for SPEC card), and
kernel/fmc-tdc-svec.ko (for SVEC card).

7

https://www.ohwr.org/project/zio
https://www.ohwr.org/project/fmc-sw
https://www.ohwr.org/project/zio
https://www.ohwr.org/project/fmc-sw
https://www.ohwr.org/projects/spec
https://www.ohwr.org/projects/svec
https://www.ohwr.org/project/zio
https://www.ohwr.org/project/fmc-sw
http://www.ohwr.org/projects/fmc-bus
https://www.ohwr.org/project/fmc-sw

FMC TDC 1ns 5 Channel Documentation

4.1.4 Drivers’ Dependencies

The TDC driver requires the following drivers to function:

• if the used carrier is SPEC then from spec repository: gn412x-fcl.ko, gn412x-gpio.ko, spec-gn412x-dma.ko and
spec-fmc-carrier.ko

• if the used carrier is SVEC then vmebus.ko

• from general-cores repository: spi-ocores.ko, i2c-ocores.ko and htvic.ko (more details in the section Building
General Cores drivers)

• from zio repository: zio-buf-vmalloc.ko and zio.ko (more details in the section Building ZIO drivers)

• from fmc repository: fmc.ko (more details in the section Building FMC driver)

• drivers from the kernel tree: mtd.ko, at24.ko, m25p80.ko, i2c_mux.ko and fpga-mgr.ko (available in kernels v4.4
and newer, for older kernels see section Building FPGA manager driver)

In addition the following tools are required to build above drivers:

• cheby (more details in the section Installing Cheby)

• wbgen2 (more details in the section Installing Wbgen2)

Please read the following subsections for details

4.1.5 Building Drivers

This subsection describes the build process of Linux Device Drivers used by the TDC and tools needed during their
build.

Installing Cheby

Clone cheby repository:

$ git clone https://gitlab.cern.ch/cohtdrivers/cheby.git

Install cheby:

$ cd cheby
$ python setup.py install

It may be required to install python-setuptools or python-setuptools.noarch package using your Linux distribution’s
software manager.

Installing Wbgen2

Clone wbgen2 repository:

$ git clone https://ohwr.org/project/wishbone-gen.git

If needed export the location of wbgen2 (needed for fmc-tdc drivers compilation):

export WBGEN2=/path/to/wishbone-gen/wbgen2

8 Chapter 4. The Software

https://www.ohwr.org/projects/spec
https://ohwr.org/project/general-cores
https://www.ohwr.org/project/zio
https://www.ohwr.org/project/fmc-sw
https://gitlab.cern.ch/cohtdrivers/cheby
https://ohwr.org/project/wishbone-gen

FMC TDC 1ns 5 Channel Documentation

Building FPGA Manager driver

If kernel module fpga-mgr.ko is not available in the kernel that is used, probably the backported version is needed.

Clone backported fpga-manager repository:

$ git clone https://gitlab.cern.ch/coht/fpga-manager.git

Build and install kernel module (fpga-mgr.ko):

$ cd fpga-manager
$ export LINUX=/path/to/linux/sources
$ make
$ make install

Building ZIO drivers

Clone zio repository:

$ git clone https://ohwr.org/misc/zio.git

Build and install kernel modules (zio-buf-vmalloc.ko and zio.ko):

$ cd zio
$ export LINUX=/path/to/linux/sources
$ make
$ make install

Building General cores drivers

Clone general-cores repository:

$ git clone https://ohwr.org/project/general-cores.git

Build and install kernel modules (spi-ocores.ko, i2c-ocores.ko and htvic.ko):

$ cd general-cores/software
$ export LINUX=/path/to/linux/sources
$ make
$ make install

Building FMC driver

Clone fmc repository:

$ git clone https://ohwr.org/project/fmc-sw.git

Build and install kernel module (fmc.ko):

$ cd fmc-sw/ $ export LINUX=/path/to/linux/sources $ make $ make install

4.1. Driver 9

FMC TDC 1ns 5 Channel Documentation

Building SPEC drivers

Clone spec repository:

$ git clone https://ohwr.org/project/spec.git

Build and install kernel modules (gn412x-fcl.ko, gn412x-gpio.ko, spec-gn412x-dma.ko and spec-fmc-carrier.ko):

$ cd spec/software
$ export CHEBY=/path/to/cheby/bin/cheby
$ export I2C=/path/to/general-cores/software/i2c-ocores
$ export SPI=/path/to/general-cores/software/spi-ocores
$ export FPGA_MGR=/path/to/fpga-manager
$ export FMC=/path/to/fmc-sw
$ export LINUX=/path/to/linux/sources
$ make
$ make install

Building SVEC drivers

Building missing mainline drivers

It may happen that your system lacks of drivers that are included into the mainline Linux kernel. This section describes
how to build i2c-mux.ko and m25p80.ko drivers for CENTOS 7.

The first step is to download the Linux sources that mach the version used in your system and unpack them using your
favorite method. Then prepare sources for a compilation:

::
make prepare

Select missing drivers by adding CONFIG_I2C_MUX=m and CONFIG_MTD_M25P80=m to .config manually, or with a
favorite tool (like menuconfig. Start the build of missing drivers:

make M=drivers/i2c/
make M=drivers/mtd/devices/

Copy drivers from drivers/mtd/devices/m25p80.ko and drivers/i2c/i2c-mux.ko to a known place.

4.1.6 Top Level Driver

The fmc-tdc is a generic driver for an FPGA device that could be instanciated on a number of FMC carriers. For each
carrier we write a little Linux module which acts as a top level driver (like the MFD drivers in the Linux kernel). In
these modules there is the knowledge about the virtual memory range, the IRQ lines, and the DMA engine to be used.

The top level driver is a platform driver that matches a string containing the application identifier. The carrier driver
builds this identification string from the device ID embedded into the FPGA (https://ohwr.org/project/fpga-dev-id).

10 Chapter 4. The Software

https://ohwr.org/project/fpga-dev-id

FMC TDC 1ns 5 Channel Documentation

4.1.7 Loading drivers for SPEC

Load drivers at24.ko and mtd.ko. They should be distributed with your Linux distribution in package like kernel-plus
for CENTOS 7 of linux-modules for Ubuntu.

sudo modprobe at24
sudo modprobe mtd

Load drivers from the mainline Linux:

sudo insmod i2c-mux.ko
sudo insmod m25p80.ko

Load fmc drivers:

sudo insmod fmc.ko

Load fpga-manager drivers:

sudo insmod fpga-mgr.ko

Load drivers from general-cores:

sudo insmod htvic.ko
sudo insmod i2c-ocores.ko
sudo insmod spi-ocores.ko

Load drivers from spec-sw:

sudo insmod spec-gn412x-dma.ko
sudo insmod gn412x-gpio.ko
sudo insmod gn412x-fcl.ko
sudo insmod spec-fmc-carrier.ko

If you use the custom path to the firmware, set it at the latest at this point.

echo -n <path_to_bitstreams> | sudo tee /sys/module/firmware_class/parameters/path

Load bitstream into SPEC’s FPGA:

echo -n <bitstream.bin> | sudo tee /sys/kernel/debug/<PCIe_device>/fpga_firmware

Load the ZIO and TDC drivers:

sudo insmod zio.ko
sudo insmod zio-buf-vmalloc.ko
sudo insmod fmc-tdc.ko
sudo insmod fmc-tdc-spec.ko

4.1. Driver 11

FMC TDC 1ns 5 Channel Documentation

4.1.8 Loading drivers for SVEC

For SVEC the loading procedure is very similar to SPEC. It is required to load svec-fmc-carrier.ko and fmc-tdc-svec.ko
instead of spec-fmc-carrier.ko and fmc-tdc-spec.ko. Additionally, there is no need to load spec-gn412x-dma.ko, gn412x-
gpio.ko and gn412x-fcl.ko, since these drivers are specific to SPEC.

sudo modprobe at24
sudo modprobe mtd
sudo insmod i2c-mux.ko
sudo insmod m25p80.ko
sudo insmod fmc.ko
sudo insmod fpga-mgr.ko
sudo insmod htvic.ko
sudo insmod i2c-ocores.ko
sudo insmod spi-ocores.ko
sudo insmod svec-fmc-carrier.ko
echo -n <path_to_bitstreams> | sudo tee /sys/module/firmware_class/parameters/path
echo -n <bitstream.bin> | sudo tee /sys/kernel/debug/svec-vme.<slot>/fpga_firmware
sudo insmod zio.ko
sudo insmod zio-buf-vmalloc.ko
sudo insmod fmc-tdc.ko
sudo insmod fmc-tdc-svec.ko

4.1.9 Module Parameters

The driver accepts a few load-time parameters for configuration. You can pass them to insmod directly, or write them
in /etc/modules.conf or the proper file in /etc/modutils/.

The following parameters are used:

irq_timeout_ms=NUMBER
It sets the IRQ coalesing timeout expressed in milli-seconds (ms). By default the value is set to 10ms.

test_data_period=NUMBER
It sets how many fake timestamps to generate every seconds on the first channel, 0 to disable. By default the
value is set to 0.

dma_buf_ddr_burst_size=NUMBER
It sets DDR size coalesing timeout expressed in number of timestamps. By default the value is set to 16 times-
tamps.

wr_offset_fix=NUMBER
It overwrites the White-Rabbit calibration offset for calibration value computed before 2018. By default this is
set to 229460 ps.

12 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

4.1.10 Device Abstraction

This driver is based on the ZIO framework. It supports initial setup of the board; it allows users to manually configure
the board, to start and stop acquisitions, to force trigger, and to read all the acquired time-stamps.

The driver is designed as a ZIO driver. ZIO is a framework for input/output hosted on http://www.ohwr.org/projects/zio.

ZIO devices are organized as csets (channel sets), and each of them includes channels. All channels belonging to the
same cset trigger together. This device offers a channel-set for each channel.

Note: Unless specified, the units are the same as for the TDC HDL design. Therefore, this driver does not perform
any data processing.

The Overall Device

As said, the device has 5 cset with 1 channel each. Channel sets from 0 to 4 represent the physical channels 1 to 5. In
other words a channel set represents a single TDC channel.

FMC TDC 1NS 5CH tdc

cset0 cset1 cset2 cset3 cset4

chan0

The TDC registers can be accessed in the proper sysfs directory:

cd /sys/bus/zio/devices/tdc-1n5c-${ID}

The overall device (tdc-1n5c) provides the following attributes:

calibration_data
It is a binary attribute which allows the user to change the run-time calibration data (the EEPROM will not be
touched). The fmc-tdc-calibration tool can be used to read write calibration data. To be consistent, this
binary interface expects only little endian values because this is the endianness used to store calibration data for
this device.

4.1. Driver 13

http://www.ohwr.org/projects/zio

FMC TDC 1ns 5 Channel Documentation

coarse
Coarse part of the current TAI time. This value is in nanoseconds with 8 ns resolution. The fmc-tdc-time tool
can be used to read TAI time.

command
Send the command to the driver. As today it is possible to enable/disable White Rabbit, set the board to the
current time or check the source of the timing. The fmc-tdc-time tool can be used to send the commands
related to the current time source.

seconds
Current TAI time in seconds. The fmc-tdc-time tool can be used to read TAI time.

temperature
It shows the current temperature. To get the temperature in C degrees use the formula temperature/16. The
fmc-tdc-temperature tool can be used to read the temperature.

transfer-mode
It shows the current transfer mode. 0 for FIFO, 1 for DMA.

wr-offset
Offset used by White Rabbit.

The Channel Set

The TDC has 5 Channel Sets named cset[0-4]. Its attributes are used to control and monitor each TDC channel
individually. All channel specific attributes are available at the channel set level.

The Channels

Because there is a one-to-one relation with the channel set, we have decided to put all custom attributes at the channel
set level. So, at this level you will find only default ZIO attributes.

The Trigger

TODO fix this section

In ZIO, the trigger is a separate software module, that can be replaced at run time. This driver includes its own ZIO
trigger type, that is selected by default when the driver is initialized. You can change trigger type (for example use the
timer ZIO trigger) but this is not the typical use case for this board.

This is the list of attributes (excluding kernel-generic and ZIO-generic ones):

enable
This is a standard zio attribute, and the code uses it to enable or disable the hardware trigger (i.e. internal and
external). By default the trigger is enabled.

post-samples, pre-samples
Number of samples to acquire. The pre-samples are acquired before the actual trigger event (plus its optional
delay). The post samples start from the trigger-sample itself. The total number of samples acquired corresponds
to the sum of the two numbers. For multi-shot acquisition, each shot acquires that many sample, but pre + post
must be at most 2048.

14 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

The Buffer

TODO fix this section

In ZIO, buffers are separate objects. The framework offers two buffer types: kmalloc and vmalloc. The former uses the
kmalloc function to allocate each block, the latter uses vmalloc to allocate the whole data area. While the kmalloc buffer
is linked with the core ZIO kernel module, vmalloc is a separate module. The driver currently prefers kmalloc, but
even when it preferred vmalloc (up to mid June 2013), if the respective module was not loaded, ZIO would instantiate
kmalloc.

You can change the buffer type, while not acquiring, by writing its name to the proper attribute. For example:

echo vmalloc > /sys/bus/zio/devices/tdc-1n5c-0004/cset0/current_buffer

The disadvantage of kmalloc is that each block is limited in size. usually 128kB (but current kernels allows up to 4MB
blocks). The bigger the block the more likely allocation fails. If you make a multi-shot acquisition you need to ensure
the buffer can fit enough blocks, and the buffer size is defined for each buffer instance, i.e. for each channel. In this
case we acquire only from the interleaved channel, so before making a 1000-long multishot acquisition you can do:

export DEV=/sys/bus/zio/devices/tdc-1n5c-0004
echo 1000 > $DEV/cset0/chani/buffer/max-buffer-len

The vmalloc buffer allows mmap support, so when using vmalloc you can save a copy of your data (actually, you save it
automatically if you use the library calls to allocate and fill the user-space buffer). However, a vmalloc buffer allocates
the whole data space at the beginning, which may be unsuitable if you have several cards and acquire from one of them
at a time.

The vmalloc buffer type starts off with a size of 128kB, but you can change it (while not acquiring), by writing to the
associated attribute of the interleaved channel. For example this sets it to 10MB:

export DEV=/sys/bus/zio/devices/tdc-1n5c-0004
echo 10000 > $DEV/cset0/chani/buffer/max-buffer-kb

4.1.11 The debugfs Interface

When the DMA mode is used, the fmctdc1ns5cha driver exports a set of debugfs attributes which are supposed to
be used only for debugging activities. For each device instance you will see a directory in /sys/kernel/debug/
fmc-tdc.*.

regs
It dumps the FPGA registers

4.1.12 Reading Data with Char Devices

To read data from user-space, applications should use the ZIO char device interface. ZIO creates 2 char devices for
each channel (as documented in ZIO documentation). The TDC can acquire data on each channel independently, so
ZIO creates ten char device, as shown below:

$ ls -l /dev/zio/tdc-*
cr--r----- 1 root root 241, 0 Jan 13 13:36 /dev/zio/tdc-1n5c-000b-0-0-ctrl
cr--r----- 1 root root 241, 1 Jan 13 13:36 /dev/zio/tdc-1n5c-000b-0-0-data
cr--r----- 1 root root 241, 2 Jan 13 13:36 /dev/zio/tdc-1n5c-000b-1-0-ctrl
cr--r----- 1 root root 241, 3 Jan 13 13:36 /dev/zio/tdc-1n5c-000b-1-0-data
cr--r----- 1 root root 241, 4 Jan 13 13:36 /dev/zio/tdc-1n5c-000b-2-0-ctrl

(continues on next page)

4.1. Driver 15

FMC TDC 1ns 5 Channel Documentation

(continued from previous page)

cr--r----- 1 root root 241, 5 Jan 13 13:36 /dev/zio/tdc-1n5c-000b-2-0-data
cr--r----- 1 root root 241, 6 Jan 13 13:36 /dev/zio/tdc-1n5c-000b-3-0-ctrl
cr--r----- 1 root root 241, 7 Jan 13 13:36 /dev/zio/tdc-1n5c-000b-3-0-data
cr--r----- 1 root root 241, 8 Jan 13 13:36 /dev/zio/tdc-1n5c-000b-4-0-ctrl
cr--r----- 1 root root 241, 9 Jan 13 13:36 /dev/zio/tdc-1n5c-000b-4-0-data

If more than one board is probed for, you’ll have more similar pairs of devices, differing in the dev_id field, i.e. the
000b shown above. The dev_id field is assigned by the Linux kernel platform subsystem.

The char-device model of ZIO is documented in the ZIO manual; basically, the ctrl device returns metadata and the
data device returns data. Items in there are strictly ordered, so you can read metadata and then the associated data, or
read only data blocks and discard the associated metadata.

The zio-dump tool, part of the ZIO distribution, turns metadata and data into a meaningful grep-friendly text stream.

4.1.13 User Header Files

Both the kernel and the user make use of the same header file fmc-tdc.h. This because they need to share some data
stracture and constants use to interpret data and meta-data in the library or by an application

Troubleshooting

This chapter lists a few errors that may happen and how to deal with them.

Installation issue with modules_install

The command sudo make modules_install may place the modules in the wrong directory or fail with an error
like:

make: *** /lib/modules/<kernel-version>/build: No such file or directory.

This happens when you compiled by setting LINUX= and your sudo is not propagating the environment to its child
processes. In this case, you should run this command instead:

sudo make modules_install LINUX=$LINUX

4.2 Tools

The driver is distributed with a few tools living in the tools/ subdirectory, most of these tools use the fmc-tdc library.
The programs are meant to provide examples about the use of the driver and library interface.

16 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

4.2.1 List TDC boards

The tool fmc-tdc-list is capable of listing the available boards in the system. Below is the output from the command
on an example system with 3 SPEC boards, each populated with a TDC mezzanine.

$ fmc-tdc-list
FMC-TDC Device ID 0019
FMC-TDC Device ID 0018
FMC-TDC Device ID 0017

4.2.2 Termination Configuration

The tool fmc-tdc-term enables or disables the 50 Ohm termination of a given input channel. The listing below shows
the run of fmc-tdc-term tool to get the current status of the 50 Ohm termination on the TDC board with an ID
assigned to 4:

$ fmc-tdc-term 0x4
channel 0: 50 Ohm termination is off
channel 1: 50 Ohm termination is off
channel 2: 50 Ohm termination is off
channel 3: 50 Ohm termination is off
channel 4: 50 Ohm termination is off

To set the 50 Ohm termination e.g. on channel 0 on the TDC board with an ID assigned to 4 please execute the following
command:

$ fmc-tdc-term 0x4 0 on
channel 0: 50 Ohm termination is on

4.2.3 Reading Temperature

The tool fmc-tdc-temperature allows to read the current temperature of the TDC board. The command below reads
the temperature of the TDC board with an ID assigned to 4:

$ fmc-tdc-temperature 0x4
31.4 deg C

4.2.4 Getting And Setting Board Time

The tool fmc-tdc-time allows to read and switch the time source to White-Rabbit or local oscillator. The command
below gets the information about the current time source:

$ fmc-tdc-time 0x4 get
WR Status: synchronized.
Current TAI time is 1647471357.000000000 s

In the example above, the time source has been set to White-Rabbit. To set the time source to the local oscillator:

$ fmc-tdc-time 0x4 local
no output after the command is executed

4.2. Tools 17

FMC TDC 1ns 5 Channel Documentation

To set the time source to the White-Rabbit:

$ fmc-tdc-time 0x4 wr
Locking the card to WR: ... locked!

4.2.5 Read Timestamps

The tool fmc-tdc-tstamp can print acquired timestamps. In the example below the tool prints 5 samples (-s param-
eter) from the channel 2 (-c parameter) on the board with the ID 0x19 (-D parameter).

fmc-tdc-tstamp -D 0x19 -c 2 -s 5
channel 2 | channel seq 0

ts 0000041028s 590492339195ps
diff 0000041028s 590492339195ps [0.000024 Hz]

channel 2 | channel seq 1
ts 0000041028s 591492339023ps
diff 0000000000s 000999999828ps [1000.001000 Hz]

channel 2 | channel seq 2
ts 0000041028s 592492338931ps
diff 0000000000s 000999999908ps [1000.001000 Hz]

channel 2 | channel seq 3
ts 0000041028s 593492338597ps
diff 0000000000s 000999999666ps [1000.001000 Hz]

channel 2 | channel seq 4
ts 0000041028s 594492338425ps
diff 0000000000s 000999999828ps [1000.001000 Hz]

4.2.6 User Offset Configuration

The tool fmc-tdc-offset sets or gets the user-offset applied to the incoming timestamps. The example below show
that all offsets are set to 0 in an example setup.

$ fmc-tdc-offset 0x19
channel 0: 0 ps
channel 1: 0 ps
channel 2: 0 ps
channel 3: 0 ps
channel 4: 0 ps

4.2.7 Calibration Data

The tool fmc-tdc-calibration reads calibration data from a file that contains it in binary form and shows it on
STDOUT in binary form or in human readable one (default). This could be used to change the TDC calibration data
at runtime by redirecting the binary output of this program to the proper sysfs binary attribute. This tool expects all
values to be little endian. Please note that the TDC driver supports only ps precision, but calibration data is typically
stored with sub-picosecond precision. For this reason, according to your source, calibration values may disagree on
the fs part.

The example below shows the read of calibration data:

18 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

$ fmc-tdc-calibration -f /sys/bus/zio/devices/tdc-1n5c-0004/calibration_data
Temperature: 47 C
White Rabbit Offset: 229460000 fs
Zero Offset
ch1-ch2: -109000 fs
ch2-ch3: 493000 fs
ch3-ch4: 499000 fs
ch4-ch5: 336000 fs

4.3 The Library

Here you can find all the information about the fmc-tdc API and the main library behaviour that you need to be aware
of to write applications.

This document introduces the developers to the development with the TDC library. Here you can find an overview
about the API, the rational behind it and examples of its usage. It is not the purpose of the document to describe the
API details. The complete API is available in the Library API section.

Note: The TDC hardware design diverged into different buffering structures. One based on FIFOs for SVEC, and one
based on double-buffering in DDR for SPEC. The API tries to provide the same user-experience, however this is not
always possible. Functions having different behaviour are properly declaring it in their documentation.

Note: This document provides also snippet of code from example.c. This is only to show you an example, please
avoid to blindly copy and paste.

4.3.1 Initialization and Cleanup

The library may keep internal information, so the application should call its initialization function fmctdc_init().
After use, it should call the exit function fmctdc_exit() to release any internal data.

Note: fmctdc_exit() is not mandatory, the operating system releases anything in any case – the library doesn’t leave
unexpected files in persistent storage.

These functions don’t do anything at this point, but they may be implemented in later releases. For example, the library
may scan the system and cache the list of peripheral cards found, to make later open calls faster. For this reason it is
recommended to, at least, initialize and release the library before starting.

Following an example from the example.c code available under tools

err = fmctdc_init();
if (err)

exit(EXIT_FAILURE);

err = use_fmctdc_library();
if (err)

exit(EXIT_FAILURE);
(continues on next page)

4.3. The Library 19

https://www.ohwr.org/projects/svec
https://www.ohwr.org/projects/spec

FMC TDC 1ns 5 Channel Documentation

(continued from previous page)

fmctdc_exit(); /* optional, indeed in the error condition
we do not do it */

4.3.2 Error Reporting

Each library function returns values according to standard libc conventions: -1 or NULL (for functions returning int
or pointers, resp.) is an error indication. When error happens, the errno variable is set appropriately.

The errno values can be standard Posix items like EINVAL, or library-specific values, for example
FMCTDC_ERR_VMALLOC (driver vmalloc allocator not available). All library-specific error values have a value greater
than 4096, to prevent collision with standard values. To convert such values to a string please use fmctdc_strerror()

Following an example from the example.c code available under tools

fprintf(stderr, "%s: Cannot open device: %s\n",
prog_name, fmctdc_strerror(errno));

4.3.3 Opening and closing

Each device must be opened before use by calling fmctdc_open(), and it should be closed after use by calling
fmctdc_close().

Note: fmctdc_close() is not mandatory, but it is recommended, to close if the process is going to terminate, as the
library has no persistent storage to clean up – but there may be persistent buffer storage allocated, and fmctdc_close()
may release it in future versions.

The data structure returned by fmctdc_open() is an opaque pointer used as token to access the API functions. The
user is not supposed to use or modify this pointer.

Another kind of open function has been provided to satisfy CERN’s developers needs. Function
fmctdc_open_by_lun() is the open by LUN (Logic Unit Number); here the LUN concept reflects the CERN
one. The usage is exactly the same as fmctdc_open() only that it uses the LUN instead of the device ID.

No automatic action is taken by fmctdc_open(). Hence, you may want to flush the buffers before starting a new
acquisition session. You can do this with fmctdc_flush()

tdc = fmctdc_open(0x0000);
if (!tdc) {

fprintf(stderr, "%s: Cannot open device: %s\n",
prog_name, fmctdc_strerror(errno));

return -1;
}

err = fmctdc_flush(tdc, channel);
if (err)

return err;

err = config_and_acquire(tdc);
if (err) {

fprintf(stderr, "%s: Error: %s\n",
prog_name, fmctdc_strerror(errno));

(continues on next page)

20 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

(continued from previous page)

return -1;
}

fmctdc_close(tdc);

4.3.4 Configuration and Status

The TDC configuration API is based on a number of getter and setter function for each option. These include: termi-
nation, IRQ coalescing timeout, board time, white-rabbit, timestamp mode.

The termination options allows you to set the 50 Ohm channel termination. You can use the following getter and setter:
fmctdc_get_termination(), fmctdc_set_termination().

err = fmctdc_set_termination(tdc, channel, termination);
if (err)

return err;
termination_rb = fmctdc_get_termination(tdc, channel);
if (termination_rb < 0)

return termination_rb;

The IRQ coalescing timeout option allows to force an IRQ when the timeout expire to inform the driver
that there is at least one pending timestamp to be transfered. You can use the following getter and setter:
fmctdc_coalescing_timeout_get(), fmctdc_coalescing_timeout_set().

err = fmctdc_coalescing_timeout_set(tdc, channel, coalescing_timeout);
if (err)

return err;
err = fmctdc_coalescing_timeout_get(tdc, channel, &coalescing_timeout_rb);
if (err)

return err;

The TDC main functionality is to timestap incoming pulses. To assign a timestamp the board needs a time reference.
This can be provided by the on-board clock, or by the more accurate white-rabbit network. You can enable or disable
white-rabbit using fmctdc_wr_mode(). You can check the white-rabbit status with fmctdc_check_wr_mode().
When working with white-rabbit the time reference is handled by the white-rabbit network.

err = fmctdc_wr_mode(tdc, wr_mode);
if (err)

return err;
wr_mode_rb = fmctdc_check_wr_mode(tdc);
if (wr_mode_rb < 0)

return wr_mode_rb;

If you do not have white-rabbit connected to the TDC, or simply this is not what you want, then be sure to disable.
When white-rabbit is disabled the TDC will use the on-board clock to keep a time reference. However, in this scenario
the user is asked to set first the time using fmctdc_set_time() or fmctdc_set_host_time().

err = fmctdc_set_time(tdc, &time);
if (err)

return err;

Whater you are using white-rabbit or not, you can get the current board time with fmctdc_get_time().

4.3. The Library 21

FMC TDC 1ns 5 Channel Documentation

err = fmctdc_get_time(tdc, &time_rb);
if (err)

return err;

Still about time, the user can add it’s own offset without changing the timebase using fmctdc_get_offset_user()
and fmctdc_set_offset_user().

err = fmctdc_set_offset_user(tdc, channel, offset_user);
if (err)

return err;
err = fmctdc_get_offset_user(tdc, channel, &offset_user_rb);
if (err)

return err;

Finally, you can monitor the board temperature using fmctdc_read_temperature(), and pulse and timestamps statis-
tics with fmctdc_stats_recv_get() and fmctdc_stats_trans_get().

err = fmctdc_stats_recv_get(tdc, channel, &recv);
if (err)

return err;
err = fmctdc_stats_trans_get(tdc, channel, &trans);
if (err)

return err;

Note: If it can be useful there is one last status function in the API used to detect the transfer mode between the driver
and the board. This function is fmctdc_transfer_mode()

Timestamp buffering has its own set of options. Buffering in hardware is fixed, it can’t be configured, so what we are
going to describe here is the Linux device driver buffering configuration. Because the TDC driver is based on ZIO,
then you can choose the buffer allocator type. You can handle this option with the pair: fmctdc_get_buffer_type()
and fmctdc_set_buffer_type().

err = fmctdc_set_buffer_type(tdc, buffer_type);
if (err)

return err;
buffer_type_rb = fmctdc_get_buffer_type(tdc);
if (buffer_type_rb < 0)

return buffer_type_rb;

You can configure - and get - the buffer size (number of timestamps) with: fmctdc_get_buffer_len() and
fmctdc_set_buffer_len(). Beware, that this function works only when using FMCTDC_BUFFER_VMALLOC.

err = fmctdc_set_buffer_len(tdc, channel, buffer_len);
if (err)

return err;
buffer_len_rb = fmctdc_get_buffer_len(tdc, channel);
if (buffer_len_rb < 0)

return buffer_len_rb;

Finally, you can select between to modes to handle buffer’s overflows: FMCTDC_BUFFER_CIRC and
FMCTDC_BUFFER_FIFO. The first will discard old timestamps to make space for the new ones, the latter will discard any
new timestamp until the buffer get consumed. To configure this option you can use: fmctdc_get_buffer_mode()
and fmctdc_set_buffer_mode().

22 Chapter 4. The Software

https://www.ohwr.org/project/zio

FMC TDC 1ns 5 Channel Documentation

err = fmctdc_set_buffer_mode(tdc, channel, buffer_mode);
if (err)

return err;
buffer_mode_rb = fmctdc_get_buffer_mode(tdc, channel);
if (buffer_mode_rb < 0)

return buffer_mode_rb;

4.3.5 Acquisiton

Before actually being able to get timestamps, the TDC acquisition must be enabled. The acquisition can be enabled or
disabled through its gateware using, respectivily, fmctdc_channel_enable() and fmctdc_channel_disable().

err = fmctdc_channel_enable(tdc, channel);
if (err)

return err;

err = fetch_and_process(tdc);
if (err)

return err;

err = fmctdc_channel_disable(tdc, channel);
if (err)

return err;

To read timestamps you may use functions fmctdc_read() and fmctdc_fread(). As the name may suggest, the first
behaves like read and the second as fread.

do {
n = fmctdc_read(tdc, channel, ts, max, O_NONBLOCK);

} while (n < 0 && errno == EAGAIN);
if (n < 0)

return n;

If you need to flush the buffer, you can use fmctdc_flush().

err = fmctdc_flush(tdc, channel);
if (err)

return err;

4.3.6 Timestamp Math

The TDC library API has functions to support timestamp math. They allow you to add, subtract, normalize, and
approximate. These functions are: fmctdc_ts_add(), fmctdc_ts_sub(), fmctdc_ts_norm(), fmctdc_ts_ps(),
and fmctdc_ts_approx_ns().

4.3. The Library 23

FMC TDC 1ns 5 Channel Documentation

4.4 The Library API

Defines

PRItsps

printf format for timestamps with pico-second resolution

PRItspsVAL(_ts)
printf value for timestamps with pico-second resolution

PRItswr

printf format for timestamps with White-Rabbit notation

PRItswrVAL(_ts)
printf value for timestamp with White-Rabbit notation

__FMCTDC_ERR_MIN

Enums

enum fmctdc_error_numbers
Values:

enumerator FMCTDC_ERR_VMALLOC

enumerator FMCTDC_ERR_UNKNOWN_BUFFER_TYPE

enumerator FMCTDC_ERR_NOT_CONSISTENT_BUFFER_TYPE

enumerator FMCTDC_ERR_VERSION_MISMATCH

enumerator __FMCTDC_ERR_MAX

enum fmctdc_channel
Enumeration for all TDC channels

Values:

enumerator FMCTDC_CH_1

enumerator FMCTDC_CH_2

enumerator FMCTDC_CH_3

enumerator FMCTDC_CH_4

24 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

enumerator FMCTDC_CH_5

enumerator FMCTDC_CH_LAST

enumerator FMCTDC_NUM_CHANNELS

enum fmctdc_buffer_mode
Enumeration of all buffer modes

Values:

enumerator FMCTDC_BUFFER_FIFO
FIFO policy: when buffer is full, new time-stamps will be dropped

enumerator FMCTDC_BUFFER_CIRC
circular buffer policy: when the buffer is full, old time-stamps will be overwritten by new ones

enum fmctdc_buffer_type
Enumeration of all buffer types

Values:

enumerator FMCTDC_BUFFER_KMALLOC
kernel allocator: kmalloc

enumerator FMCTDC_BUFFER_VMALLOC
kernel allocator: vmalloc

enum fmctdc_channel_status
Enumeration for all possible status of a channel

Values:

enumerator FMCTDC_STATUS_DISABLE
The cannel is disable

enumerator FMCTDC_STATUS_ENABLE
the channel is enable

enum ft_transfer_mode
Values:

enumerator FT_ACQ_TYPE_FIFO

enumerator FT_ACQ_TYPE_DMA

4.4. The Library API 25

FMC TDC 1ns 5 Channel Documentation

enum fmctdc_ts_mode
Enumeration for all possible time-stmap mode

Values:

enumerator FMCTDC_TS_MODE_POST
after post-processing

enumerator FMCTDC_TS_MODE_RAW
directly from ACAM chip. This should be used ONLY when debugging low level issues

Functions

const char *fmctdc_strerror(int err)
It returns the error message associated to the given error code

Parameters
err – [in] error code

int fmctdc_init(void)
Init the library. You must call this function before use any other library function.

Returns
0 on success, otherwise -1 and errno is appropriately set

void fmctdc_exit(void)
It releases all the resources used by the library and allocated by fmctdc_init().

int fmctdc_set_time(struct fmctdc_board *b, const struct fmctdc_time *t)
It sets the TDC base-time according to the given time-stamp. Note that, for the time being, it sets only seconds.
Note that, you can set the time only when the acquisition is disabled.

Parameters

• userb – [in] TDC board instance token

• t – [in] time-stamp

Returns
0 on success, otherwise -1 and errno is set

int fmctdc_get_time(struct fmctdc_board *b, struct fmctdc_time *t)
It gets the base-time of a TDC device. Note that, for the time being, it gets only seconds.

Parameters

• userb – [in] TDC board instance token

• t – [out] time-stamp

Returns
0 on success, otherwise -1 and errno is set

int fmctdc_set_host_time(struct fmctdc_board *b)
It sets the TDC base-time according to the host time

Parameters
userb – [in] TDC board instance token

26 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_wr_mode(struct fmctdc_board *b, int on)
It enables/disables the WhiteRabbit timing system on a TDC device

Parameters

• userb – [in] TDC board instance token

• on – [in] white-rabbit status to set

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_check_wr_mode(struct fmctdc_board *b)
It check the current status of the WhiteRabbit timing system on a TDC device

Parameters
userb – [in] TDC board instance token

Returns
0 if it properly works, -1 on error and errno is set appropriately.

• ENOLINK if it is not synchronized and

• ENODEV if it is not enabled

float fmctdc_read_temperature(struct fmctdc_board *b)
It reads the current temperature of a TDC device

Parameters
userb – [in] TDC board instance token

Returns
temperature

int fmctdc_channel_status_set(struct fmctdc_board *userb, unsigned int channel, enum fmctdc_channel_status
status)

The function enables/disables timestamp acquisition for the given channel.

Parameters

• userb – [in] TDC board instance token

• channel – [in] channel to which we want change status

• status – [in] enable status to set

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_channel_enable(struct fmctdc_board *userb, unsigned int channel)
It enables a given channel. NOTE: it is just a wrapper of fmctdc_channel_status_set()

Parameters

• userb – [in] TDC board instance token

• channel – [in] channel to which we want change status

Returns
0 on success, otherwise -1 and errno is set appropriately

4.4. The Library API 27

FMC TDC 1ns 5 Channel Documentation

int fmctdc_channel_disable(struct fmctdc_board *userb, unsigned int channel)
It disable a given channel. NOTE: it is just a wrapper of fmctdc_channel_status_set()

Parameters

• userb – [in] TDC board instance token

• channel – [in] channel to which we want change status

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_channel_status_get(struct fmctdc_board *userb, unsigned int channel)
It gets the acquisition status of a TDC channel

Parameters

• userb – [in] TDC board instance token

• channel – [in] channel to which we want read the status

Returns
the acquisition status (0 disabled, 1 enabled), otherwise -1 and errno is set appropriately

int fmctdc_set_termination(struct fmctdc_board *b, unsigned int channel, int enable)
The function enables/disables the 50 Ohm termination of the given channel. Termination may be changed any-
time.

Parameters

• userb – [in] TDC board instance token

• channel – [in] to use

• on – [in] status of the termination to set

Returns
0 on success, otherwise a negative errno code is set appropriately

int fmctdc_get_termination(struct fmctdc_board *b, unsigned int channel)
The function returns current temrmination status: 0 if the given channel is high-impedance and positive if it is
50 Ohm-terminated.

Parameters

• userb – [in] TDC board instance token

• channel – [in] to use

Returns
termination status, otherwise a negative errno code is set appropriately

int fmctdc_get_buffer_type(struct fmctdc_board *userb)
The function returns current buffer type: 0 for kmallo, 1 for vmalloc.

Parameters
userb – [in] TDC board instance token

Returns
buffer type, otherwise a negative errno code is set appropriately

int fmctdc_set_buffer_type(struct fmctdc_board *userb, enum fmctdc_buffer_type type)
The function sets the buffer type for a device

Parameters

28 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

• userb – [in] TDC board instance token

• type – [in] buffer type to use

Returns
0 on success, otherwise a negative errno code is set appropriately

int fmctdc_get_buffer_mode(struct fmctdc_board *userb, unsigned int channel)
The function returns current buffer mode: 0 for FIFO, 1 for circular buffer.

Parameters

• userb – [in] TDC board instance token

• channel – [in] to use

Returns
buffer mode, otherwise a negative errno code is set appropriately

int fmctdc_set_buffer_mode(struct fmctdc_board *userb, unsigned int channel, enum fmctdc_buffer_mode
mode)

The function sets the buffer mode for a channel

Parameters

• userb – [in] TDC board instance token

• channel – [in] to use

• mode – [in] buffer mode to use

Returns
0 on success, otherwise a negative errno code is set appropriately

int fmctdc_get_buffer_len(struct fmctdc_board *userb, unsigned int channel)
The function returns current driver buffer length (number of timestamps)

Parameters

• userb – [in] TDC board instance token

• channel – [in] to use

Returns
buffer lenght, otherwise a negative errno code is set appropriately

int fmctdc_set_buffer_len(struct fmctdc_board *userb, unsigned int channel, unsigned int length)

The function set the buffer length

Internally, the buffer allocates memory in chunks of minimun 1KiB. This means, for example, that if you ask for
65 timestamp the buffer will allocate space for 128. This because 64 timestamps fit in 1KiB, to store 65 we need
2KiB (128 timestamps).

NOTE: it works only with the VMALLOC allocator.

Parameters

• userb – [in] TDC board instance token

• channel – [in] to use

• length – [in] maximum number of timestamps to store (min: 64)

Returns
0 on success, otherwise a negative errno code is set appropriately

4.4. The Library API 29

FMC TDC 1ns 5 Channel Documentation

int fmctdc_set_offset_user(struct fmctdc_board *userb, unsigned int channel, int32_t offset)
It sets the user offset to be applied on incoming timestamps. All the timestamps read from the driver (this means
also from this library) will be already corrected using this offset.

Parameters

• userb – [in] TDC board instance token

• channel – [in] target channel [0, 4]

• offset – [in] the number of pico-seconds to be added

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_get_offset_user(struct fmctdc_board *userb, unsigned int channel, int32_t *offset)
It get the current user offset applied to the incoming timestamps

Parameters

• userb – [in] TDC board instance token

• channel – [in] target channel [0, 4]

• offset – [out] the number of pico-seconds to be added

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_transfer_mode(struct fmctdc_board *userb, enum ft_transfer_mode *mode)
It gets the current transfer mode

Parameters

• userb – [in] TDC board instance token

• mode – [out] transfer mode

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_coalescing_timeout_set(struct fmctdc_board *userb, unsigned int channel, unsigned int
timeout_ms)

It sets the coalescing timeout on a given channel

It does not work per-channel for the following acquisition mechanism:

• FIFO (it will return the global IRQ coalescing timeout)

Parameters

• userb – [in] TDC board instance token

• channel – [in] target channel [0, 4]

• timeout_ms – [in] ms timeout to trigger IRQ

Returns
0 on success, otherwise -1 and errno is set appropriately

30 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

int fmctdc_coalescing_timeout_get(struct fmctdc_board *userb, unsigned int channel, unsigned int
*timeout_ms)

It gets the coalescing timeout from a given channel

It does not work per-channel for the following acuqisition mechanism:

• FIFO: there is a global configuration for all channels

Parameters

• userb – [in] TDC board instance token

• channel – [in] target channel [0, 4]

• timeout_ms – [out] ms timeout to trigger IRQ

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_ts_mode_set(struct fmctdc_board *userb, unsigned int channel, enum fmctdc_ts_mode mode)
It sets the timestamp mode

Parameters

• userb – [in] TDC board instance token

• channel – [in] target channel [0, 4]

• mode – [in] time-stamp mode

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_ts_mode_get(struct fmctdc_board *userb, unsigned int channel, enum fmctdc_ts_mode *mode)
It gets the timestamp mode

Parameters

• userb – [in] TDC board instance token

• channel – [in] target channel [0, 4]

• mode – [out] time-stamp mode

Returns
0 on success, otherwise -1 and errno is set appropriately

struct fmctdc_board *fmctdc_open(int dev_id)

struct fmctdc_board *fmctdc_open_by_lun(int lun)
It opens one specific device by logical unit number (CERN/BE-CO-like). The function uses a symbolic link in
/dev that points to the standard device. The link is created by the local installation procedure, and it allows to get
the device id according to the LUN. Read also fmctdc_open() documentation.

Parameters
lun – [in] Logical Unit Number

Returns
an instance token, otherwise NULL and errno is appripriately set

4.4. The Library API 31

FMC TDC 1ns 5 Channel Documentation

int fmctdc_close(struct fmctdc_board*)
It closes a TDC instance opened with fmctdc_open() or fmctdc_open_by_lun()

Parameters
userb – [in] TDC board instance token

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_fread(struct fmctdc_board *b, unsigned int channel, struct fmctdc_time *t, int n)
this “fread” behaves like stdio: it reads all the samples. Read fmctdc_read() for more details about the function.

Parameters

• userb – [in] TDC board instance token

• channel – [in] channel to use

• t – [out] array of time-stamps

• n – [in] number of elements to save in the array

Returns
number of acquired time-stamps, otherwise -1 and errno is set appropriately

int fmctdc_fileno_channel(struct fmctdc_board *b, unsigned int channel)
It get the file descriptor of a TDC channel. So, for example, you can poll(2) and select(2). Note that, the file
descriptor is the file-descriptor of a ZIO control char-device.

Parameters

• userb – [in] TDC board instance token

• channel – [in] channel to use

Returns
a file descriptor, otherwise -1 and errno is set appropriately

int fmctdc_read(struct fmctdc_board *b, unsigned int channel, struct fmctdc_time *t, int n, int flags)
It reads a given number of time-stamps from the driver. It will wait at most once and return the number of samples
that it received from a given input channel.

Timestamps are to the base time.

This “read” behaves like the system call and obeys O_NONBLOCK

Parameters

• userb – [in] TDC board instance token

• channel – [in] channel to use [0, 4]

• t – [out] array of time-stamps

• n – [in] number of elements to save in the array

• flags – [in] tune the behaviour of the function. O_NONBLOCK - do not block

Returns
number of acquired time-stamps, otherwise -1 and errno is set appropriately.

• EINVAL for invalid arguments

• EIO for invalid IO transfer

• EAGAIN if nothing ready to read in NONBLOCK mode

32 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

int fmctdc_flush(struct fmctdc_board *userb, unsigned int channel)
It removes all samples from the channel buffer. In order to doing this, the function temporary disable any active
acquisition, only when the flush is completed the acquisition will be re-enabled

Parameters

• userb – [in] TDC board instance token

• channel – [in] target channel [0, 4]

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_stats_recv_get(struct fmctdc_board *userb, unsigned int channel, uint32_t *val)
It gets the number of received pulses (on hardware)

Parameters

• userb – [in] TDC board instance token

• channel – [in] target channel [0, 4]

• val – [out] number of received pulses

Returns
0 on success, otherwise -1 and errno is set appropriately

int fmctdc_stats_trans_get(struct fmctdc_board *userb, unsigned int channel, uint32_t *val)
It gets the number of transferred timestamps

Parameters

• userb – [in] TDC board instance token

• channel – [in] target channel [0, 4]

• val – [out] number of transferred timestamps

Returns
0 on success, otherwise -1 and errno is set appropriately

uint64_t fmctdc_ts_approx_ns(struct fmctdc_time *a)
Set of mathematical functions on time-stamps

It provides a nano-second approximation of the timestamp.

Parameters
a – [in] timestamp

Returns
it returns the time stamp in nano-seconds

uint64_t fmctdc_ts_ps(struct fmctdc_time *a)
It provides a pico-seconds representation of the time stamp. Bear in mind that it may overflow. If you thing that
it may happen, check the timestamp

Parameters
a – [in] timestamp

Returns
it returns the time stamp in pico-seconds

4.4. The Library API 33

FMC TDC 1ns 5 Channel Documentation

void fmctdc_ts_norm(struct fmctdc_time *a)
It normalizes the timestamp

Parameters
a – [inout] timestamp

int fmctdc_ts_sub(struct fmctdc_time *r, const struct fmctdc_time *a, const struct fmctdc_time *b)
It perform the subtraction: r = a - b

Parameters

• r – [out] result

• a – [in] normalized timestamp

• b – [in] normalized timestamp

Returns
1 if the difference is negative, otherwise 0

void fmctdc_ts_add(struct fmctdc_time *r, const struct fmctdc_time *a, const struct fmctdc_time *b)
It perform an addiction: r = a + b

Parameters

• r – [out] result

• a – [in] normalized timestamp

• b – [in] normalized timestamp

int _fmctdc_tscmp(struct fmctdc_time *a, struct fmctdc_time *b)

Variables

const char *const libfmctdc_version_s
libfmctdc version string

const char *const libfmctdc_zio_version_s
zio version string used during compilation of libfmctdc

struct fmctdc_time
#include <fmctdc-lib.h> FMC-TDC time-stamp descriptor

Public Members

uint64_t seconds
TAI seconds. Note this is not an UTC time; the counter does not support leap seconds. The internal counter
is also limited to 32 bits (2038-error-prone).

uint32_t coarse
number of ticks of 8ns since the beginning of the last second

34 Chapter 4. The Software

FMC TDC 1ns 5 Channel Documentation

uint32_t frac
fractional part of an 8 ns tick, rescaled to (0..4095) range - i.e. 0 = 0 ns, and 4095 = 7.999 ns.

uint32_t seq_id
channel sequence number

uint32_t debug
debug stuff, driver/firmware-specific

4.4. The Library API 35

FMC TDC 1ns 5 Channel Documentation

36 Chapter 4. The Software

CHAPTER

FIVE

THE MEMORY MAP

5.1 Supported Designs

Here you can find the complete memory MAP for the supported designs. This will include the TDC registers as well
as the carrier registers and any other component used in an FMC-TDC-1NS-5CH design.

5.1.1 SPEC FMC-TDC-1NS-5CHA

The memory map is divided in two parts: the Carrier (SPEC) part common to all SPEC designs, and the TDC part
specific to the FMC-TDC-1NS-5CHA mezzanine.

Memory map summary

SPEC FMC-TDC-1NS-5CHA memory map

HW address Type Name HDL name
0x00000-0x01fff SUBMAP spec-base-regs spec-base-regs
0x10000-0x1ffff SUBMAP tdc-base-regs tdc-base-regs

Registers description

SPEC base registers

Memory map summary

SPEC base registers

37

FMC TDC 1ns 5 Channel Documentation

HW address Type Name HDL name
0x0000-0x003f SUBMAP metadata metadata
0x0040-0x005f BLOCK csr csr
0x0040 REG csr.app_offset csr_app_offset
0x0044 REG csr.resets csr_resets
0x0048 REG csr.fmc_presence csr_fmc_presence
0x004c REG csr.gn4124_status csr_gn4124_status
0x0050 REG csr.ddr_status csr_ddr_status
0x0054 REG csr.pcb_rev csr_pcb_rev
0x0070-0x007f SUBMAP therm_id therm_id
0x0080-0x009f SUBMAP fmc_i2c fmc_i2c
0x00a0-0x00bf SUBMAP flash_spi flash_spi
0x00c0-0x00ff SUBMAP dma dma
0x0100-0x01ff SUBMAP vic vic
0x0200-0x02ff SUBMAP buildinfo buildinfo
0x1000-0x1fff SUBMAP wrc_regs wrc_regs

Registers description

csr.app_offset

• HDL name: csr_app_offset

• address: 0x40

• block offset: 0x0

• access mode: ro

offset to the application metadata

31 30 29 28 27 26 25 24
app_offset[31:24]
23 22 21 20 19 18 17 16
app_offset[23:16]
15 14 13 12 11 10 9 8
app_offset[15:8]
7 6 5 4 3 2 1 0
app_offset[7:0]

csr.resets

• HDL name: csr_resets

• address: 0x44

• block offset: 0x4

• access mode: rw

global and application resets

38 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

31 30 29 28 27 26 25 24

• • • • • • • •

23 22 21 20 19 18 17 16

• • • • • • • •

15 14 13 12 11 10 9 8

• • • • • • • •

7 6 5 4 3 2 1 0

• • • • • • appl global

global
(not documented)

appl
(not documented)

csr.fmc_presence

• HDL name: csr_fmc_presence

• address: 0x48

• block offset: 0x8

• access mode: ro

presence lines for the fmcs

31 30 29 28 27 26 25 24
fmc_presence[31:24]
23 22 21 20 19 18 17 16
fmc_presence[23:16]
15 14 13 12 11 10 9 8
fmc_presence[15:8]
7 6 5 4 3 2 1 0
fmc_presence[7:0]

csr.gn4124_status

• HDL name: csr_gn4124_status

• address: 0x4c

• block offset: 0xc

• access mode: ro

status of gennum

5.1. Supported Designs 39

FMC TDC 1ns 5 Channel Documentation

31 30 29 28 27 26 25 24
gn4124_status[31:24]
23 22 21 20 19 18 17 16
gn4124_status[23:16]
15 14 13 12 11 10 9 8
gn4124_status[15:8]
7 6 5 4 3 2 1 0
gn4124_status[7:0]

csr.ddr_status

• HDL name: csr_ddr_status

• address: 0x50

• block offset: 0x10

• access mode: ro

status of the ddr3 controller

31 30 29 28 27 26 25 24

• • • • • • • •

23 22 21 20 19 18 17 16

• • • • • • • •

15 14 13 12 11 10 9 8

• • • • • • • •

7 6 5 4 3 2 1 0

• • • • • • • calib_done

calib_done
Set when calibration is done.

csr.pcb_rev

• HDL name: csr_pcb_rev

• address: 0x54

• block offset: 0x14

• access mode: ro

pcb revision

40 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

31 30 29 28 27 26 25 24

• • • • • • • •

23 22 21 20 19 18 17 16

• • • • • • • •

15 14 13 12 11 10 9 8

• • • • • • • •

7 6 5 4 3 2 1 0

• • • • rev[3:0]

rev
(not documented)

FMC-TDC-1NS-5CHA

See TDC memory map.

5.1.2 SVEC FMC-TDC-1NS-5CHA

The memory map is divided in two parts: the Carrier (SVEC) part common to all SVEC designs, and two memory
regions for TDCs (TDC1 and TDC2) part specific to the FMC-TDC-1NS-5CHA mezzanine.

Memory map summary

SVEC FMC-TDC-1NS-5CHA memory map

HW address Type Name HDL name
0x00000-0x0ffff SUBMAP svec-base-regs svec-base-regs
0x10000-0x1ffff SUBMAP tdc1-base-regs tdc1-base-regs
0x20000-0x2ffff SUBMAP tdc2-base-regs tdc2-base-regs

Registers description

SVEC base registers

Memory map summary

SVEC base registers

5.1. Supported Designs 41

FMC TDC 1ns 5 Channel Documentation

HW address Type Name HDL name
0x0000-0x003f SUBMAP metadata metadata
0x0040-0x005f BLOCK csr csr
0x0040 REG csr.app_offset csr_app_offset
0x0044 REG csr.resets csr_resets
0x0048 REG csr.fmc_presence csr_fmc_presence
0x004c REG csr.unused0 csr_unused0
0x0050 REG csr.ddr_status csr_ddr_status
0x0054 REG csr.pcb_rev csr_pcb_rev
0x0058 REG csr.ddr4_addr csr_ddr4_addr
0x005c REG csr.ddr5_addr csr_ddr5_addr
0x0080-0x008f SUBMAP therm_id therm_id
0x00a0-0x00bf SUBMAP fmc_i2c fmc_i2c
0x00c0-0x00df SUBMAP flash_spi flash_spi
0x0100-0x01ff SUBMAP vic vic
0x0200-0x02ff SUBMAP buildinfo buildinfo
0x1000-0x17ff SUBMAP wrc_regs wrc_regs
0x2000-0x2fff SUBMAP ddr4_data ddr4_data
0x3000-0x3fff SUBMAP ddr5_data ddr5_data

Registers description

csr.app_offset

• HDL name: csr_app_offset

• address: 0x40

• block offset: 0x0

• access mode: ro

offset to the application metadata

31 30 29 28 27 26 25 24
app_offset[31:24]
23 22 21 20 19 18 17 16
app_offset[23:16]
15 14 13 12 11 10 9 8
app_offset[15:8]
7 6 5 4 3 2 1 0
app_offset[7:0]

42 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

csr.resets

• HDL name: csr_resets

• address: 0x44

• block offset: 0x4

• access mode: rw

global and application resets

31 30 29 28 27 26 25 24

• • • • • • • •

23 22 21 20 19 18 17 16

• • • • • • • •

15 14 13 12 11 10 9 8

• • • • • • • •

7 6 5 4 3 2 1 0

• • • • • • appl global

global
(not documented)

appl
(not documented)

csr.fmc_presence

• HDL name: csr_fmc_presence

• address: 0x48

• block offset: 0x8

• access mode: ro

presence lines for the fmcs

31 30 29 28 27 26 25 24
fmc_presence[31:24]
23 22 21 20 19 18 17 16
fmc_presence[23:16]
15 14 13 12 11 10 9 8
fmc_presence[15:8]
7 6 5 4 3 2 1 0
fmc_presence[7:0]

5.1. Supported Designs 43

FMC TDC 1ns 5 Channel Documentation

csr.unused0

• HDL name: csr_unused0

• address: 0x4c

• block offset: 0xc

• access mode: ro

unused (status of gennum)

31 30 29 28 27 26 25 24
unused0[31:24]
23 22 21 20 19 18 17 16
unused0[23:16]
15 14 13 12 11 10 9 8
unused0[15:8]
7 6 5 4 3 2 1 0
unused0[7:0]

csr.ddr_status

• HDL name: csr_ddr_status

• address: 0x50

• block offset: 0x10

• access mode: ro

status of the ddr controllers

31 30 29 28 27 26 25 24

• • • • • • • •

23 22 21 20 19 18 17 16

• • • • • • • •

15 14 13 12 11 10 9 8

• • • • • • • •

7 6 5 4 3 2 1 0

• • • • • • ddr5_calib_doneddr4_calib_done

ddr4_calib_done
Set when ddr4 calibration is done.

ddr5_calib_done
Set when ddr5 calibration is done.

44 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

csr.pcb_rev

• HDL name: csr_pcb_rev

• address: 0x54

• block offset: 0x14

• access mode: ro

pcb revision

31 30 29 28 27 26 25 24

• • • • • • • •

23 22 21 20 19 18 17 16

• • • • • • • •

15 14 13 12 11 10 9 8

• • • • • • • •

7 6 5 4 3 2 1 0

• • • rev[4:0]

rev
(not documented)

csr.ddr4_addr

• HDL name: csr_ddr4_addr

• address: 0x58

• block offset: 0x18

• access mode: rw

address of data to read or to write

31 30 29 28 27 26 25 24
ddr4_addr[31:24]
23 22 21 20 19 18 17 16
ddr4_addr[23:16]
15 14 13 12 11 10 9 8
ddr4_addr[15:8]
7 6 5 4 3 2 1 0
ddr4_addr[7:0]

5.1. Supported Designs 45

FMC TDC 1ns 5 Channel Documentation

csr.ddr5_addr

• HDL name: csr_ddr5_addr

• address: 0x5c

• block offset: 0x1c

• access mode: rw

address of data to read or to write

31 30 29 28 27 26 25 24
ddr5_addr[31:24]
23 22 21 20 19 18 17 16
ddr5_addr[23:16]
15 14 13 12 11 10 9 8
ddr5_addr[15:8]
7 6 5 4 3 2 1 0
ddr5_addr[7:0]

First FMC-TDC-1NS-5CHA

See TDC memory map.

Second FMC-TDC-1NS-5CHA

See TDC memory map.

5.2 TDC memory map

Following the memory map for the part of the TDC design that drives the FMC-TDC-1NS-5CH modules.

5.2.1 Memory map summary

FMC-TDC-1NS-5CH mezzanine memory map

HW address Type Name HDL name
0x1000-0x1fff SUBMAP one-wire one-wire
0x2000-0x2fff SUBMAP core core
0x3000-0x3fff SUBMAP eic eic
0x4000-0x4fff SUBMAP i2c i2c
0x5000-0x5fff SUBMAP mem mem
0x6000-0x6fff SUBMAP mem-dma mem-dma
0x7000-0x7fff SUBMAP mem-dma-eic mem-dma-eic

46 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

Registers description

5.2.2 One wire

5.2.3 TDC Onewire Master

Memory map summary

SW Offset Type Name HW prefix C prefix
0x0 REG Status Register tdc_ow_csr CSR
0x4 REG Board Temperature tdc_ow_temp TEMP
0x8 REG Board Unique ID (MSW) tdc_ow_id_h ID_H
0xc REG Board Unique ID (LSW) tdc_ow_id_l ID_L

Register description

Status Register

HW prefix: tdc_ow_csr
HW address: 0x0
SW prefix: CSR
SW offset: 0x0

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - - VALID

• VALID [read/write]: Temperature and ID valid
read 1: the values in the TEMP, ID_H, ID_L registers contain a valid readout from the DS18xx chip

Board Temperature

HW prefix: tdc_ow_temp
HW address: 0x1
SW prefix: TEMP
SW offset: 0x4

5.2. TDC memory map 47

FMC TDC 1ns 5 Channel Documentation

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
TEMP[15:8]

7 6 5 4 3 2 1 0
TEMP[7:0]

• TEMP [read-only]: Temperature

Board Unique ID (MSW)

HW prefix: tdc_ow_id_h
HW address: 0x2
SW prefix: ID_H
SW offset: 0x8

31 30 29 28 27 26 25 24
ID_H[31:24]

23 22 21 20 19 18 17 16
ID_H[23:16]

15 14 13 12 11 10 9 8
ID_H[15:8]

7 6 5 4 3 2 1 0
ID_H[7:0]

• ID_H [read-only]: Unique ID (32 highest bits)

Board Unique ID (LSW)

HW prefix: tdc_ow_id_l
HW address: 0x3
SW prefix: ID_L
SW offset: 0xc

31 30 29 28 27 26 25 24
ID_L[31:24]

23 22 21 20 19 18 17 16
ID_L[23:16]

15 14 13 12 11 10 9 8
ID_L[15:8]

7 6 5 4 3 2 1 0
ID_L[7:0]

48 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

• ID_L [read-only]: Unique ID (32 lowest bits)

5.2.4 Core

5.2.5 EIC

5.2.6 TDC EIC

FMC TDC embedded interrrupt controller.

Memory map summary

SW Offset Type Name HW prefix C prefix
0x20 REG Interrupt disable register tdc_eic_eic_idr EIC_IDR
0x24 REG Interrupt enable register tdc_eic_eic_ier EIC_IER
0x28 REG Interrupt mask register tdc_eic_eic_imr EIC_IMR
0x2c REG Interrupt status register tdc_eic_eic_isr EIC_ISR

Register description

Interrupt disable register

HW prefix: tdc_eic_eic_idr
HW address: 0x8
SW prefix: EIC_IDR
SW offset: 0x20

Writing 1 disables handling of the interrupt associated with corresponding bit. Writin 0 has no effect.

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - TDC_DMA5 TDC_DMA4

7 6 5 4 3 2 1 0
TDC_DMA3 TDC_DMA2 TDC_DMA1 TDC_FIFO5 TDC_FIFO4 TDC_FIFO3 TDC_FIFO2 TDC_FIFO1

• TDC_FIFO1 [write-only]: FMC TDC timestamps interrupt (FIFO1)
write 1: disable interrupt ’FMC TDC timestamps interrupt (FIFO1)’
write 0: no effect

• TDC_FIFO2 [write-only]: FMC TDC timestamps interrupt (FIFO2)
write 1: disable interrupt ’FMC TDC timestamps interrupt (FIFO2)’
write 0: no effect

5.2. TDC memory map 49

FMC TDC 1ns 5 Channel Documentation

• TDC_FIFO3 [write-only]: FMC TDC timestamps interrupt (FIFO3)
write 1: disable interrupt ’FMC TDC timestamps interrupt (FIFO3)’
write 0: no effect

• TDC_FIFO4 [write-only]: FMC TDC timestamps interrupt (FIFO4)
write 1: disable interrupt ’FMC TDC timestamps interrupt (FIFO4)’
write 0: no effect

• TDC_FIFO5 [write-only]: FMC TDC timestamps interrupt (FIFO5)
write 1: disable interrupt ’FMC TDC timestamps interrupt (FIFO5)’
write 0: no effect

• TDC_DMA1 [write-only]: FMC TDC timestamps interrupt (DMA1)
write 1: disable interrupt ’FMC TDC timestamps interrupt (DMA1)’
write 0: no effect

• TDC_DMA2 [write-only]: FMC TDC timestamps interrupt (DMA2)
write 1: disable interrupt ’FMC TDC timestamps interrupt (DMA2)’
write 0: no effect

• TDC_DMA3 [write-only]: FMC TDC timestamps interrupt (DMA3)
write 1: disable interrupt ’FMC TDC timestamps interrupt (DMA3)’
write 0: no effect

• TDC_DMA4 [write-only]: FMC TDC timestamps interrupt (DMA4)
write 1: disable interrupt ’FMC TDC timestamps interrupt (DMA4)’
write 0: no effect

• TDC_DMA5 [write-only]: FMC TDC timestamps interrupt (DMA5)
write 1: disable interrupt ’FMC TDC timestamps interrupt (DMA5)’
write 0: no effect

Interrupt enable register

HW prefix: tdc_eic_eic_ier
HW address: 0x9
SW prefix: EIC_IER
SW offset: 0x24

Writing 1 enables handling of the interrupt associated with corresponding bit. Writin 0 has no effect.

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - TDC_DMA5 TDC_DMA4

7 6 5 4 3 2 1 0
TDC_DMA3 TDC_DMA2 TDC_DMA1 TDC_FIFO5 TDC_FIFO4 TDC_FIFO3 TDC_FIFO2 TDC_FIFO1

• TDC_FIFO1 [write-only]: FMC TDC timestamps interrupt (FIFO1)
write 1: enable interrupt ’FMC TDC timestamps interrupt (FIFO1)’
write 0: no effect

50 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

• TDC_FIFO2 [write-only]: FMC TDC timestamps interrupt (FIFO2)
write 1: enable interrupt ’FMC TDC timestamps interrupt (FIFO2)’
write 0: no effect

• TDC_FIFO3 [write-only]: FMC TDC timestamps interrupt (FIFO3)
write 1: enable interrupt ’FMC TDC timestamps interrupt (FIFO3)’
write 0: no effect

• TDC_FIFO4 [write-only]: FMC TDC timestamps interrupt (FIFO4)
write 1: enable interrupt ’FMC TDC timestamps interrupt (FIFO4)’
write 0: no effect

• TDC_FIFO5 [write-only]: FMC TDC timestamps interrupt (FIFO5)
write 1: enable interrupt ’FMC TDC timestamps interrupt (FIFO5)’
write 0: no effect

• TDC_DMA1 [write-only]: FMC TDC timestamps interrupt (DMA1)
write 1: enable interrupt ’FMC TDC timestamps interrupt (DMA1)’
write 0: no effect

• TDC_DMA2 [write-only]: FMC TDC timestamps interrupt (DMA2)
write 1: enable interrupt ’FMC TDC timestamps interrupt (DMA2)’
write 0: no effect

• TDC_DMA3 [write-only]: FMC TDC timestamps interrupt (DMA3)
write 1: enable interrupt ’FMC TDC timestamps interrupt (DMA3)’
write 0: no effect

• TDC_DMA4 [write-only]: FMC TDC timestamps interrupt (DMA4)
write 1: enable interrupt ’FMC TDC timestamps interrupt (DMA4)’
write 0: no effect

• TDC_DMA5 [write-only]: FMC TDC timestamps interrupt (DMA5)
write 1: enable interrupt ’FMC TDC timestamps interrupt (DMA5)’
write 0: no effect

Interrupt mask register

HW prefix: tdc_eic_eic_imr
HW address: 0xa
SW prefix: EIC_IMR
SW offset: 0x28

Shows which interrupts are enabled. 1 means that the interrupt associated with the bitfield is enabled

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - TDC_DMA5 TDC_DMA4

7 6 5 4 3 2 1 0
TDC_DMA3 TDC_DMA2 TDC_DMA1 TDC_FIFO5 TDC_FIFO4 TDC_FIFO3 TDC_FIFO2 TDC_FIFO1

5.2. TDC memory map 51

FMC TDC 1ns 5 Channel Documentation

• TDC_FIFO1 [read-only]: FMC TDC timestamps interrupt (FIFO1)
read 1: interrupt ’FMC TDC timestamps interrupt (FIFO1)’ is enabled
read 0: interrupt ’FMC TDC timestamps interrupt (FIFO1)’ is disabled

• TDC_FIFO2 [read-only]: FMC TDC timestamps interrupt (FIFO2)
read 1: interrupt ’FMC TDC timestamps interrupt (FIFO2)’ is enabled
read 0: interrupt ’FMC TDC timestamps interrupt (FIFO2)’ is disabled

• TDC_FIFO3 [read-only]: FMC TDC timestamps interrupt (FIFO3)
read 1: interrupt ’FMC TDC timestamps interrupt (FIFO3)’ is enabled
read 0: interrupt ’FMC TDC timestamps interrupt (FIFO3)’ is disabled

• TDC_FIFO4 [read-only]: FMC TDC timestamps interrupt (FIFO4)
read 1: interrupt ’FMC TDC timestamps interrupt (FIFO4)’ is enabled
read 0: interrupt ’FMC TDC timestamps interrupt (FIFO4)’ is disabled

• TDC_FIFO5 [read-only]: FMC TDC timestamps interrupt (FIFO5)
read 1: interrupt ’FMC TDC timestamps interrupt (FIFO5)’ is enabled
read 0: interrupt ’FMC TDC timestamps interrupt (FIFO5)’ is disabled

• TDC_DMA1 [read-only]: FMC TDC timestamps interrupt (DMA1)
read 1: interrupt ’FMC TDC timestamps interrupt (DMA1)’ is enabled
read 0: interrupt ’FMC TDC timestamps interrupt (DMA1)’ is disabled

• TDC_DMA2 [read-only]: FMC TDC timestamps interrupt (DMA2)
read 1: interrupt ’FMC TDC timestamps interrupt (DMA2)’ is enabled
read 0: interrupt ’FMC TDC timestamps interrupt (DMA2)’ is disabled

• TDC_DMA3 [read-only]: FMC TDC timestamps interrupt (DMA3)
read 1: interrupt ’FMC TDC timestamps interrupt (DMA3)’ is enabled
read 0: interrupt ’FMC TDC timestamps interrupt (DMA3)’ is disabled

• TDC_DMA4 [read-only]: FMC TDC timestamps interrupt (DMA4)
read 1: interrupt ’FMC TDC timestamps interrupt (DMA4)’ is enabled
read 0: interrupt ’FMC TDC timestamps interrupt (DMA4)’ is disabled

• TDC_DMA5 [read-only]: FMC TDC timestamps interrupt (DMA5)
read 1: interrupt ’FMC TDC timestamps interrupt (DMA5)’ is enabled
read 0: interrupt ’FMC TDC timestamps interrupt (DMA5)’ is disabled

Interrupt status register

HW prefix: tdc_eic_eic_isr
HW address: 0xb
SW prefix: EIC_ISR
SW offset: 0x2c

Each bit represents the state of corresponding interrupt. 1 means the interrupt is pending. Writing 1 to a bit clears the
corresponding interrupt. Writing 0 has no effect.

52 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - TDC_DMA5 TDC_DMA4

7 6 5 4 3 2 1 0
TDC_DMA3 TDC_DMA2 TDC_DMA1 TDC_FIFO5 TDC_FIFO4 TDC_FIFO3 TDC_FIFO2 TDC_FIFO1

• TDC_FIFO1 [read/write]: FMC TDC timestamps interrupt (FIFO1)
read 1: interrupt ’FMC TDC timestamps interrupt (FIFO1)’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’FMC TDC timestamps interrupt (FIFO1)’
write 0: no effect

• TDC_FIFO2 [read/write]: FMC TDC timestamps interrupt (FIFO2)
read 1: interrupt ’FMC TDC timestamps interrupt (FIFO2)’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’FMC TDC timestamps interrupt (FIFO2)’
write 0: no effect

• TDC_FIFO3 [read/write]: FMC TDC timestamps interrupt (FIFO3)
read 1: interrupt ’FMC TDC timestamps interrupt (FIFO3)’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’FMC TDC timestamps interrupt (FIFO3)’
write 0: no effect

• TDC_FIFO4 [read/write]: FMC TDC timestamps interrupt (FIFO4)
read 1: interrupt ’FMC TDC timestamps interrupt (FIFO4)’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’FMC TDC timestamps interrupt (FIFO4)’
write 0: no effect

• TDC_FIFO5 [read/write]: FMC TDC timestamps interrupt (FIFO5)
read 1: interrupt ’FMC TDC timestamps interrupt (FIFO5)’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’FMC TDC timestamps interrupt (FIFO5)’
write 0: no effect

• TDC_DMA1 [read/write]: FMC TDC timestamps interrupt (DMA1)
read 1: interrupt ’FMC TDC timestamps interrupt (DMA1)’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’FMC TDC timestamps interrupt (DMA1)’
write 0: no effect

• TDC_DMA2 [read/write]: FMC TDC timestamps interrupt (DMA2)
read 1: interrupt ’FMC TDC timestamps interrupt (DMA2)’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’FMC TDC timestamps interrupt (DMA2)’
write 0: no effect

• TDC_DMA3 [read/write]: FMC TDC timestamps interrupt (DMA3)
read 1: interrupt ’FMC TDC timestamps interrupt (DMA3)’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’FMC TDC timestamps interrupt (DMA3)’
write 0: no effect

• TDC_DMA4 [read/write]: FMC TDC timestamps interrupt (DMA4)
read 1: interrupt ’FMC TDC timestamps interrupt (DMA4)’ is pending

5.2. TDC memory map 53

FMC TDC 1ns 5 Channel Documentation

read 0: interrupt not pending
write 1: clear interrupt ’FMC TDC timestamps interrupt (DMA4)’
write 0: no effect

• TDC_DMA5 [read/write]: FMC TDC timestamps interrupt (DMA5)
read 1: interrupt ’FMC TDC timestamps interrupt (DMA5)’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’FMC TDC timestamps interrupt (DMA5)’
write 0: no effect

Interrupts

FMC TDC timestamps interrupt (FIFO1)

HW prefix: tdc_eic_tdc_fifo1
C prefix: TDC_FIFO1
Trigger: high level

FMC TDC FIFO1 not empty.

FMC TDC timestamps interrupt (FIFO2)

HW prefix: tdc_eic_tdc_fifo2
C prefix: TDC_FIFO2
Trigger: high level

FMC TDC FIFO1 not empty.

FMC TDC timestamps interrupt (FIFO3)

HW prefix: tdc_eic_tdc_fifo3
C prefix: TDC_FIFO3
Trigger: high level

FMC TDC FIFO3 not empty.

54 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

FMC TDC timestamps interrupt (FIFO4)

HW prefix: tdc_eic_tdc_fifo4
C prefix: TDC_FIFO4
Trigger: high level

FMC TDC FIFO4 not empty.

FMC TDC timestamps interrupt (FIFO5)

HW prefix: tdc_eic_tdc_fifo5
C prefix: TDC_FIFO5
Trigger: high level

FMC TDC FIFO5 not empty.

FMC TDC timestamps interrupt (DMA1)

HW prefix: tdc_eic_tdc_dma1
C prefix: TDC_DMA1
Trigger: high level

FMC TDC DMA1 acquisition ready.

FMC TDC timestamps interrupt (DMA2)

HW prefix: tdc_eic_tdc_dma2
C prefix: TDC_DMA2
Trigger: high level

FMC TDC DMA1 acquisition ready.

5.2. TDC memory map 55

FMC TDC 1ns 5 Channel Documentation

FMC TDC timestamps interrupt (DMA3)

HW prefix: tdc_eic_tdc_dma3
C prefix: TDC_DMA3
Trigger: high level

FMC TDC DMA3 acquisition ready.

FMC TDC timestamps interrupt (DMA4)

HW prefix: tdc_eic_tdc_dma4
C prefix: TDC_DMA4
Trigger: high level

FMC TDC DMA4 acquisition ready.

FMC TDC timestamps interrupt (DMA5)

HW prefix: tdc_eic_tdc_dma5
C prefix: TDC_DMA5
Trigger: high level

FMC TDC DMA5 acquisition ready.

5.2.7 I2C

Not used.

5.2.8 Mem

5.2.9 Timestamp FIFO

56 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

Memory map summary

SW Offset Type Name HW prefix C prefix
0x0 REG Delta Timestamp Word 1 tsf_delta1 DELTA1
0x4 REG Delta Timestamp Word 2 tsf_delta2 DELTA2
0x8 REG Delta Timestamp Word 3 tsf_delta3 DELTA3
0xc REG Channel Offset Word 1 tsf_offset1 OFFSET1
0x10 REG Channel Offset Word 2 tsf_offset2 OFFSET2
0x14 REG Channel Offset Word 3 tsf_offset3 OFFSET3
0x18 REG Control/Status tsf_csr CSR
0x1c FIFOREG FIFO ’Timestamp FIFO’ data output register 0 tsf_fifo_r0 FIFO_R0
0x20 FIFOREG FIFO ’Timestamp FIFO’ data output register 1 tsf_fifo_r1 FIFO_R1
0x24 FIFOREG FIFO ’Timestamp FIFO’ data output register 2 tsf_fifo_r2 FIFO_R2
0x28 FIFOREG FIFO ’Timestamp FIFO’ data output register 3 tsf_fifo_r3 FIFO_R3
0x2c REG FIFO ’Timestamp FIFO’ control/status register tsf_fifo_csr FIFO_CSR

Register description

Delta Timestamp Word 1

HW prefix: tsf_delta1
HW address: 0x0
SW prefix: DELTA1
SW offset: 0x0

31 30 29 28 27 26 25 24
DELTA1[31:24]

23 22 21 20 19 18 17 16
DELTA1[23:16]

15 14 13 12 11 10 9 8
DELTA1[15:8]

7 6 5 4 3 2 1 0
DELTA1[7:0]

• DELTA1 [read-only]: Delta Timestamp Word 1 (TAI cycles, signed)

Delta Timestamp Word 2

HW prefix: tsf_delta2
HW address: 0x1
SW prefix: DELTA2
SW offset: 0x4

5.2. TDC memory map 57

FMC TDC 1ns 5 Channel Documentation

31 30 29 28 27 26 25 24
DELTA2[31:24]

23 22 21 20 19 18 17 16
DELTA2[23:16]

15 14 13 12 11 10 9 8
DELTA2[15:8]

7 6 5 4 3 2 1 0
DELTA2[7:0]

• DELTA2 [read-only]: Delta Timestamp Word 2 (8ns ticks, unsigned)

Delta Timestamp Word 3

HW prefix: tsf_delta3
HW address: 0x2
SW prefix: DELTA3
SW offset: 0x8

31 30 29 28 27 26 25 24
DELTA3[31:24]

23 22 21 20 19 18 17 16
DELTA3[23:16]

15 14 13 12 11 10 9 8
DELTA3[15:8]

7 6 5 4 3 2 1 0
DELTA3[7:0]

• DELTA3 [read-only]: Delta Timestamp Word 3 (fractional part, unsigned)

Channel Offset Word 1

HW prefix: tsf_offset1
HW address: 0x3
SW prefix: OFFSET1
SW offset: 0xc

31 30 29 28 27 26 25 24
OFFSET1[31:24]

23 22 21 20 19 18 17 16
OFFSET1[23:16]

15 14 13 12 11 10 9 8
OFFSET1[15:8]

7 6 5 4 3 2 1 0
OFFSET1[7:0]

58 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

• OFFSET1 [read/write]: Channel Offset Word 1 (TAI cycles, signed)

Channel Offset Word 2

HW prefix: tsf_offset2
HW address: 0x4
SW prefix: OFFSET2
SW offset: 0x10

31 30 29 28 27 26 25 24
OFFSET2[31:24]

23 22 21 20 19 18 17 16
OFFSET2[23:16]

15 14 13 12 11 10 9 8
OFFSET2[15:8]

7 6 5 4 3 2 1 0
OFFSET2[7:0]

• OFFSET2 [read/write]: Channel Offset Word 2 (8ns ticks, unsigned)

Channel Offset Word 3

HW prefix: tsf_offset3
HW address: 0x5
SW prefix: OFFSET3
SW offset: 0x14

31 30 29 28 27 26 25 24
OFFSET3[31:24]

23 22 21 20 19 18 17 16
OFFSET3[23:16]

15 14 13 12 11 10 9 8
OFFSET3[15:8]

7 6 5 4 3 2 1 0
OFFSET3[7:0]

• OFFSET3 [read/write]: Channel Offset Word 3 (fractional part, unsigned)

5.2. TDC memory map 59

FMC TDC 1ns 5 Channel Documentation

Control/Status

HW prefix: tsf_csr
HW address: 0x6
SW prefix: CSR
SW offset: 0x18

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- RAW_MODE DELTA_REF[2:0] RST_SEQ DELTA_READ DELTA_READY

• DELTA_READY [read-only]: Delta Timestamp Ready

• DELTA_READ [write-only]: Read Delta Timestamp

• RST_SEQ [write-only]: Reset Sequence Counter

• DELTA_REF [read/write]: Delta Timestamp Reference Channel
Channel (0-4) to take as the reference for the delta timestamps

• RAW_MODE [read/write]: Raw readout mode
1: enables readout of raw timestamps

FIFO ’Timestamp FIFO’ data output register 0

HW prefix: tsf_fifo_r0
HW address: 0x7
SW prefix: FIFO_R0
SW offset: 0x1c

31 30 29 28 27 26 25 24
TS0[31:24]

23 22 21 20 19 18 17 16
TS0[23:16]

15 14 13 12 11 10 9 8
TS0[15:8]

7 6 5 4 3 2 1 0
TS0[7:0]

• TS0 [read-only]: The timestamp (word 0)

60 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

FIFO ’Timestamp FIFO’ data output register 1

HW prefix: tsf_fifo_r1
HW address: 0x8
SW prefix: FIFO_R1
SW offset: 0x20

31 30 29 28 27 26 25 24
TS1[31:24]

23 22 21 20 19 18 17 16
TS1[23:16]

15 14 13 12 11 10 9 8
TS1[15:8]

7 6 5 4 3 2 1 0
TS1[7:0]

• TS1 [read-only]: The timestamp (word 1)

FIFO ’Timestamp FIFO’ data output register 2

HW prefix: tsf_fifo_r2
HW address: 0x9
SW prefix: FIFO_R2
SW offset: 0x24

31 30 29 28 27 26 25 24
TS2[31:24]

23 22 21 20 19 18 17 16
TS2[23:16]

15 14 13 12 11 10 9 8
TS2[15:8]

7 6 5 4 3 2 1 0
TS2[7:0]

• TS2 [read-only]: The timestamp (word 2)

5.2. TDC memory map 61

FMC TDC 1ns 5 Channel Documentation

FIFO ’Timestamp FIFO’ data output register 3

HW prefix: tsf_fifo_r3
HW address: 0xa
SW prefix: FIFO_R3
SW offset: 0x28

31 30 29 28 27 26 25 24
TS3[31:24]

23 22 21 20 19 18 17 16
TS3[23:16]

15 14 13 12 11 10 9 8
TS3[15:8]

7 6 5 4 3 2 1 0
TS3[7:0]

• TS3 [read-only]: The timestamp (word 3)

FIFO ’Timestamp FIFO’ control/status register

HW prefix: tsf_fifo_csr
HW address: 0xb
SW prefix: FIFO_CSR
SW offset: 0x2c

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - CLEAR_BUS EMPTY FULL

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - USEDW[5:0]

• FULL [read-only]: FIFO full flag
1: FIFO ’Timestamp FIFO’ is full
0: FIFO is not full

• EMPTY [read-only]: FIFO empty flag
1: FIFO ’Timestamp FIFO’ is empty
0: FIFO is not empty

• CLEAR_BUS [write-only]: FIFO clear
write 1: clears FIFO ’Timestamp FIFO
write 0: no effect

62 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

• USEDW [read-only]: FIFO counter
Number of data records currently being stored in FIFO ’Timestamp FIFO’

5.2.10 Mem DMA

5.2.11 TDC DMA Buffer Control Registers

Memory map summary

SW Offset Type Name HW prefix C prefix
0x0 REG Control/Status register tdc_buf_csr CSR
0x4 REG Current buffer base address register tdc_buf_cur_base CUR_BASE
0x8 REG Current buffer base count register tdc_buf_cur_count CUR_COUNT
0xc REG Current buffer base size/valid flag register tdc_buf_cur_size CUR_SIZE
0x10 REG Next buffer base address register tdc_buf_next_base NEXT_BASE
0x14 REG Next buffer base size/valid flag register tdc_buf_next_size NEXT_SIZE

Register description

Control/Status register

HW prefix: tdc_buf_csr
HW address: 0x0
SW prefix: CSR
SW offset: 0x0

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
OVERFLOW DONE SWITCH_BUFFERS BURST_SIZE[9:5]

15 14 13 12 11 10 9 8
BURST_SIZE[4:0] IRQ_TIMEOUT[9:7]

7 6 5 4 3 2 1 0
IRQ_TIMEOUT[6:0] ENABLE

• ENABLE [read/write]: Enable acquisition
1: timestamps of the given channel will be sequentially written to the current buffer, provided it’s valid
(CUR_SIZE.VALID=1)
0: acquisition off

• IRQ_TIMEOUT [read/write]: IRQ Timeout (ms)
Interrupt coalescing timeout in milliseconds. Pick a high enough value to avoid too frequent interrupts and a low enough one
to prevent buffer contention. 10 ms should be OK for most of the cases

• BURST_SIZE [read/write]: Burst size (timestamps)
Number of timestamps in a single burst to the DDR memory. Default = 16

• SWITCH_BUFFERS [write-only]: Switch buffers
write 1: atomically switches the acquisition buffer from the current one (base/size in CUR_BASE/CUR_SIZE) to the next

5.2. TDC memory map 63

FMC TDC 1ns 5 Channel Documentation

one (described in NEXT_BASE/NEXT_SIZE registers)
write 0: no action

• DONE [read/write]: Burst complete
read 1: the current buffer has been fully committed to the DDR memory after writing 1 to SWITCH_BUFFERS field.
read 0: still some transfers pending

• OVERFLOW [read/write]: DMA overflow
read 1: both the current and the next buffer have been filled with timestamps. Dropping all new incoming TS.

Current buffer base address register

HW prefix: tdc_buf_cur_base
HW address: 0x1
SW prefix: CUR_BASE
SW offset: 0x4

31 30 29 28 27 26 25 24
CUR_BASE[31:24]

23 22 21 20 19 18 17 16
CUR_BASE[23:16]

15 14 13 12 11 10 9 8
CUR_BASE[15:8]

7 6 5 4 3 2 1 0
CUR_BASE[7:0]

• CUR_BASE [read/write]: Base address
Base address of the current buffer (in bytes) relative to the DDR3 chip (0 = first word in the memory)

Current buffer base count register

HW prefix: tdc_buf_cur_count
HW address: 0x2
SW prefix: CUR_COUNT
SW offset: 0x8

31 30 29 28 27 26 25 24
CUR_COUNT[31:24]

23 22 21 20 19 18 17 16
CUR_COUNT[23:16]

15 14 13 12 11 10 9 8
CUR_COUNT[15:8]

7 6 5 4 3 2 1 0
CUR_COUNT[7:0]

64 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

• CUR_COUNT [read-only]: Number of data samples
Number of data samples in the buffer (1 sample = 1 timestamp)

Current buffer base size/valid flag register

HW prefix: tdc_buf_cur_size
HW address: 0x3
SW prefix: CUR_SIZE
SW offset: 0xc

31 30 29 28 27 26 25 24
- VALID SIZE[29:24]

23 22 21 20 19 18 17 16
SIZE[23:16]

15 14 13 12 11 10 9 8
SIZE[15:8]

7 6 5 4 3 2 1 0
SIZE[7:0]

• SIZE [read/write]: Size
Number of data samples the buffer can hold (1 sample = 1 timestamp)

• VALID [read/write]: Valid flag
write 1: indicate that this buffer is ready for acquisition and correctly configured

Next buffer base address register

HW prefix: tdc_buf_next_base
HW address: 0x4
SW prefix: NEXT_BASE
SW offset: 0x10

31 30 29 28 27 26 25 24
NEXT_BASE[31:24]

23 22 21 20 19 18 17 16
NEXT_BASE[23:16]

15 14 13 12 11 10 9 8
NEXT_BASE[15:8]

7 6 5 4 3 2 1 0
NEXT_BASE[7:0]

• NEXT_BASE [read/write]: Base address

5.2. TDC memory map 65

FMC TDC 1ns 5 Channel Documentation

Next buffer base size/valid flag register

HW prefix: tdc_buf_next_size
HW address: 0x5
SW prefix: NEXT_SIZE
SW offset: 0x14

31 30 29 28 27 26 25 24
- VALID SIZE[29:24]

23 22 21 20 19 18 17 16
SIZE[23:16]

15 14 13 12 11 10 9 8
SIZE[15:8]

7 6 5 4 3 2 1 0
SIZE[7:0]

• SIZE [read/write]: Size (in transfers)

• VALID [read/write]: Valid flag

5.2.12 Mem DMA EIC

5.2.13 GN4124 DMA enhanced interrupt controller

Enhanced interrrupt controller for GN4124 DMA.

Memory map summary

SW Offset Type Name HW prefix C prefix
0x20 REG Interrupt disable register dma_eic_eic_idr EIC_IDR
0x24 REG Interrupt enable register dma_eic_eic_ier EIC_IER
0x28 REG Interrupt mask register dma_eic_eic_imr EIC_IMR
0x2c REG Interrupt status register dma_eic_eic_isr EIC_ISR

Register description

Interrupt disable register

HW prefix: dma_eic_eic_idr
HW address: 0x8
SW prefix: EIC_IDR
SW offset: 0x20

66 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

Writing 1 disables handling of the interrupt associated with corresponding bit. Writin 0 has no effect.

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - DMA_ERROR DMA_DONE

• DMA_DONE [write-only]: DMA done interrupt
write 1: disable interrupt ’DMA done interrupt’
write 0: no effect

• DMA_ERROR [write-only]: DMA error interrupt
write 1: disable interrupt ’DMA error interrupt’
write 0: no effect

Interrupt enable register

HW prefix: dma_eic_eic_ier
HW address: 0x9
SW prefix: EIC_IER
SW offset: 0x24

Writing 1 enables handling of the interrupt associated with corresponding bit. Writin 0 has no effect.

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - DMA_ERROR DMA_DONE

• DMA_DONE [write-only]: DMA done interrupt
write 1: enable interrupt ’DMA done interrupt’
write 0: no effect

• DMA_ERROR [write-only]: DMA error interrupt
write 1: enable interrupt ’DMA error interrupt’
write 0: no effect

5.2. TDC memory map 67

FMC TDC 1ns 5 Channel Documentation

Interrupt mask register

HW prefix: dma_eic_eic_imr
HW address: 0xa
SW prefix: EIC_IMR
SW offset: 0x28

Shows which interrupts are enabled. 1 means that the interrupt associated with the bitfield is enabled

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - DMA_ERROR DMA_DONE

• DMA_DONE [read-only]: DMA done interrupt
read 1: interrupt ’DMA done interrupt’ is enabled
read 0: interrupt ’DMA done interrupt’ is disabled

• DMA_ERROR [read-only]: DMA error interrupt
read 1: interrupt ’DMA error interrupt’ is enabled
read 0: interrupt ’DMA error interrupt’ is disabled

Interrupt status register

HW prefix: dma_eic_eic_isr
HW address: 0xb
SW prefix: EIC_ISR
SW offset: 0x2c

Each bit represents the state of corresponding interrupt. 1 means the interrupt is pending. Writing 1 to a bit clears the
corresponding interrupt. Writing 0 has no effect.

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - DMA_ERROR DMA_DONE

• DMA_DONE [read/write]: DMA done interrupt
read 1: interrupt ’DMA done interrupt’ is pending

68 Chapter 5. The Memory Map

FMC TDC 1ns 5 Channel Documentation

read 0: interrupt not pending
write 1: clear interrupt ’DMA done interrupt’
write 0: no effect

• DMA_ERROR [read/write]: DMA error interrupt
read 1: interrupt ’DMA error interrupt’ is pending
read 0: interrupt not pending
write 1: clear interrupt ’DMA error interrupt’
write 0: no effect

Interrupts

DMA done interrupt

HW prefix: dma_eic_dma_done
C prefix: DMA_DONE
Trigger: rising edge

DMA done interrupt line (rising edge sensitive).

DMA error interrupt

HW prefix: dma_eic_dma_error
C prefix: DMA_ERROR
Trigger: rising edge

DMA error interrupt line (rising edge sensitive).

5.2. TDC memory map 69

FMC TDC 1ns 5 Channel Documentation

70 Chapter 5. The Memory Map

INDEX

Symbols
__FMCTDC_ERR_MIN (C macro), 24
_fmctdc_tscmp (C++ function), 34

F
fmctdc_buffer_mode (C++ enum), 25
fmctdc_buffer_mode::FMCTDC_BUFFER_CIRC (C++

enumerator), 25
fmctdc_buffer_mode::FMCTDC_BUFFER_FIFO (C++

enumerator), 25
fmctdc_buffer_type (C++ enum), 25
fmctdc_buffer_type::FMCTDC_BUFFER_KMALLOC

(C++ enumerator), 25
fmctdc_buffer_type::FMCTDC_BUFFER_VMALLOC

(C++ enumerator), 25
fmctdc_channel (C++ enum), 24
fmctdc_channel::FMCTDC_CH_1 (C++ enumerator),

24
fmctdc_channel::FMCTDC_CH_2 (C++ enumerator),

24
fmctdc_channel::FMCTDC_CH_3 (C++ enumerator),

24
fmctdc_channel::FMCTDC_CH_4 (C++ enumerator),

24
fmctdc_channel::FMCTDC_CH_5 (C++ enumerator),

24
fmctdc_channel::FMCTDC_CH_LAST (C++ enumera-

tor), 25
fmctdc_channel::FMCTDC_NUM_CHANNELS (C++ enu-

merator), 25
fmctdc_channel_disable (C++ function), 27
fmctdc_channel_enable (C++ function), 27
fmctdc_channel_status (C++ enum), 25
fmctdc_channel_status::FMCTDC_STATUS_DISABLE

(C++ enumerator), 25
fmctdc_channel_status::FMCTDC_STATUS_ENABLE

(C++ enumerator), 25
fmctdc_channel_status_get (C++ function), 28
fmctdc_channel_status_set (C++ function), 27
fmctdc_check_wr_mode (C++ function), 27
fmctdc_close (C++ function), 31
fmctdc_coalescing_timeout_get (C++ function), 30

fmctdc_coalescing_timeout_set (C++ function), 30
fmctdc_error_numbers (C++ enum), 24
fmctdc_error_numbers::__FMCTDC_ERR_MAX (C++

enumerator), 24
fmctdc_error_numbers::FMCTDC_ERR_NOT_CONSISTENT_BUFFER_TYPE

(C++ enumerator), 24
fmctdc_error_numbers::FMCTDC_ERR_UNKNOWN_BUFFER_TYPE

(C++ enumerator), 24
fmctdc_error_numbers::FMCTDC_ERR_VERSION_MISMATCH

(C++ enumerator), 24
fmctdc_error_numbers::FMCTDC_ERR_VMALLOC

(C++ enumerator), 24
fmctdc_exit (C++ function), 26
fmctdc_fileno_channel (C++ function), 32
fmctdc_flush (C++ function), 32
fmctdc_fread (C++ function), 32
fmctdc_get_buffer_len (C++ function), 29
fmctdc_get_buffer_mode (C++ function), 29
fmctdc_get_buffer_type (C++ function), 28
fmctdc_get_offset_user (C++ function), 30
fmctdc_get_termination (C++ function), 28
fmctdc_get_time (C++ function), 26
fmctdc_init (C++ function), 26
fmctdc_open (C++ function), 31
fmctdc_open_by_lun (C++ function), 31
fmctdc_read (C++ function), 32
fmctdc_read_temperature (C++ function), 27
fmctdc_set_buffer_len (C++ function), 29
fmctdc_set_buffer_mode (C++ function), 29
fmctdc_set_buffer_type (C++ function), 28
fmctdc_set_host_time (C++ function), 26
fmctdc_set_offset_user (C++ function), 29
fmctdc_set_termination (C++ function), 28
fmctdc_set_time (C++ function), 26
fmctdc_stats_recv_get (C++ function), 33
fmctdc_stats_trans_get (C++ function), 33
fmctdc_strerror (C++ function), 26
fmctdc_time (C++ struct), 34
fmctdc_time::coarse (C++ member), 34
fmctdc_time::debug (C++ member), 35
fmctdc_time::frac (C++ member), 34
fmctdc_time::seconds (C++ member), 34

71

FMC TDC 1ns 5 Channel Documentation

fmctdc_time::seq_id (C++ member), 35
fmctdc_transfer_mode (C++ function), 30
fmctdc_ts_add (C++ function), 34
fmctdc_ts_approx_ns (C++ function), 33
fmctdc_ts_mode (C++ enum), 25
fmctdc_ts_mode::FMCTDC_TS_MODE_POST (C++ enu-

merator), 26
fmctdc_ts_mode::FMCTDC_TS_MODE_RAW (C++ enu-

merator), 26
fmctdc_ts_mode_get (C++ function), 31
fmctdc_ts_mode_set (C++ function), 31
fmctdc_ts_norm (C++ function), 33
fmctdc_ts_ps (C++ function), 33
fmctdc_ts_sub (C++ function), 34
fmctdc_wr_mode (C++ function), 27
ft_transfer_mode (C++ enum), 25
ft_transfer_mode::FT_ACQ_TYPE_DMA (C++ enu-

merator), 25
ft_transfer_mode::FT_ACQ_TYPE_FIFO (C++ enu-

merator), 25

L
libfmctdc_version_s (C++ member), 34
libfmctdc_zio_version_s (C++ member), 34

P
PRItsps (C macro), 24
PRItspsVAL (C macro), 24
PRItswr (C macro), 24
PRItswrVAL (C macro), 24

72 Index

	Introduction
	Repositories and Releases
	Documentation License

	Hardware Description
	Requirements and Supported Platforms
	Mechanical/Environmental
	Timing

	The Gateware
	About Source Code
	Build from Sources
	Source Code Organisation
	Dependencies

	Data Format

	The Software
	Driver
	Driver Features
	Requirements
	Compile And Install
	Drivers’ Dependencies
	Building Drivers
	Installing Cheby
	Installing Wbgen2
	Building FPGA Manager driver
	Building ZIO drivers
	Building General cores drivers
	Building FMC driver
	Building SPEC drivers
	Building SVEC drivers
	Building missing mainline drivers

	Top Level Driver
	Loading drivers for SPEC
	Loading drivers for SVEC
	Module Parameters
	Device Abstraction
	The Overall Device
	The Channel Set
	The Channels
	The Trigger
	The Buffer

	The debugfs Interface
	Reading Data with Char Devices
	User Header Files
	Troubleshooting
	Installation issue with modules_install

	Tools
	List TDC boards
	Termination Configuration
	Reading Temperature
	Getting And Setting Board Time
	Read Timestamps
	User Offset Configuration
	Calibration Data

	The Library
	Initialization and Cleanup
	Error Reporting
	Opening and closing
	Configuration and Status
	Acquisiton
	Timestamp Math

	The Library API

	The Memory Map
	Supported Designs
	SPEC FMC-TDC-1NS-5CHA
	Memory map summary
	Registers description

	SPEC base registers
	Memory map summary
	Registers description
	csr.app_offset
	csr.resets
	csr.fmc_presence
	csr.gn4124_status
	csr.ddr_status
	csr.pcb_rev

	FMC-TDC-1NS-5CHA

	SVEC FMC-TDC-1NS-5CHA
	Memory map summary
	Registers description

	SVEC base registers
	Memory map summary
	Registers description
	csr.app_offset
	csr.resets
	csr.fmc_presence
	csr.unused0
	csr.ddr_status
	csr.pcb_rev
	csr.ddr4_addr
	csr.ddr5_addr

	First FMC-TDC-1NS-5CHA
	Second FMC-TDC-1NS-5CHA

	TDC memory map
	Memory map summary
	Registers description

	One wire
	TDC Onewire Master
	Memory map summary
	Register description

	Core
	EIC
	TDC EIC
	Memory map summary
	Register description
	Interrupts

	I2C
	Mem
	Timestamp FIFO
	Memory map summary
	Register description

	Mem DMA
	TDC DMA Buffer Control Registers
	Memory map summary
	Register description

	Mem DMA EIC
	GN4124 DMA enhanced interrupt controller
	Memory map summary
	Register description
	Interrupts

	Index

